A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
M
- M2M - class in jline.io
- Model-to-Model transformation class for converting between different queueing network model formats.
- M3A - class in jline.lib.m3a
- M3A (Markovian Arrival Process with 3-moment Approximation) tool for MMAP compression.
- M3A.Companion - class in jline.lib.m3a.M3A
- M3A.CoxianParameters - class in jline.lib.m3a.M3A
- M3A.ErlangParameters - class in jline.lib.m3a.M3A
- M3A.HyperExpParameters - class in jline.lib.m3a.M3A
- M3A.PhaseTypeParameters - class in jline.lib.m3a.M3A
- m3afit_auto(jline.lib.m3a.MTrace,jline.lib.m3a.M3aFitOptions) - function in jline.lib.m3a.M3aFitKt
- Automatic fitting of trace into a Marked Markovian Arrival Process.
- m3afit_auto(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer,java.lang.Integer) - function in jline.lib.m3a.M3aFitKt
- Automatic fitting with simple parameters.
- m3afit_auto(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer) - function in jline.lib.m3a.M3aFitKt
- Automatic fitting with simple parameters.
- m3afit_init(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.m3a.M3aFitKt
- Prepares multiclass trace for M3A fitting from Matrix inputs.
- m3afit_init(kotlin.DoubleArray,kotlin.IntArray) - function in jline.lib.m3a.M3aFitKt
- Prepares multiclass trace for M3A fitting.
- M3aFitKt - class in jline.lib.m3a
- M3aFitOptions - class in jline.lib.m3a
- Options for M3A fitting algorithms.
- M3aUtils - class in jline.lib.m3a
- Utility functions for M3A (Markovian Arrival Process with 3-moment Approximation) compression.
- M3aUtils.Companion - class in jline.lib.m3a.M3aUtils
- M3pp22_fitc_approx_cov - class in jline.api.mam.m3pp
- Fits a second-order Marked MMPP for two classes using covariance approximation.
- m3pp22_fitc_approx_cov(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp22_fitc_approx_cov.Companion
- M3pp22_fitc_approx_cov_multiclass - class in jline.api.mam.m3pp
- Fits a M3PP(2,2) given the underlying MMPP(2).
- m3pp22_fitc_approx_cov_multiclass(kotlin.Array,kotlin.DoubleArray,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp22_fitc_approx_cov_multiclass.Companion
- m3pp22_interleave_fitc(kotlin.Array,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double) - function in jline.api.mam.m3pp.M3pp22_interleave_fitcKt
- Fits L pairs of classes into a single MMAP, obtained by lumped superposition of L different M3PP2 processes.
- M3pp22_interleave_fitcKt - class in jline.api.mam.m3pp
- M3pp22FitCountApproxCovAlgo - class in jline.api.mam.m3pp
- M3Pp22 Fit Count Approx Cov algorithms
- M3pp22FitCountApproxCovMulticlassAlgo - class in jline.api.mam.m3pp
- M3Pp22 Fit Count Approx Cov Multiclass algorithms
- M3pp22InterleaveFitCountAlgo - class in jline.api.mam.m3pp
- M3Pp22 Interleave Fit Count algorithms
- M3pp2m_fitc - class in jline.api.mam.m3pp
- Fits a second-order Marked MMPP using exact count statistics.
- m3pp2m_fitc(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc.Companion
- m3pp2m_fitc(kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray) - function in jline.api.mam.m3pp.M3pp2m_fitcKt
- Simple wrapper function for m3pp2m_fitc
- M3pp2m_fitc_approx - class in jline.api.mam.m3pp
- Fits a second-order Marked MMPP using approximation with optimization.
- m3pp2m_fitc_approx(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_approx.Companion
- M3pp2m_fitc_approx_ag - class in jline.api.mam.m3pp
- Fits a second-order Marked MMPP using auto-gamma approach.
- m3pp2m_fitc_approx_ag(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_approx_ag.Companion
- m3pp2m_fitc_approx_ag_multiclass(kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray) - function in jline.api.mam.m3pp.M3pp2m_fitcKt
- Wrapper function for m3pp2m_fitc_approx_ag_multiclass
- M3pp2m_fitc_approx_ag_multiclass - class in jline.api.mam.m3pp
- Fits a M3PP(2,m) given the underlying MMPP(2).
- m3pp2m_fitc_approx_ag_multiclass(kotlin.Array,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_approx_ag_multiclass.Companion
- m3pp2m_fitc_theoretical(jline.util.matrix.MatrixCell,java.lang.String,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_theoreticalKt
- Fits the theoretical characteristics of a MMAP(n,m) with a M3PP(2,m).
- m3pp2m_fitc_theoretical(jline.util.matrix.MatrixCell,java.lang.String,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_theoreticalKt
- Fits the theoretical characteristics of a MMAP(n,m) with a M3PP(2,m).
- m3pp2m_fitc_theoretical(jline.util.matrix.MatrixCell,java.lang.String) - function in jline.api.mam.m3pp.M3pp2m_fitc_theoreticalKt
- Fits the theoretical characteristics of a MMAP(n,m) with a M3PP(2,m).
- m3pp2m_fitc_theoretical(jline.util.matrix.MatrixCell) - function in jline.api.mam.m3pp.M3pp2m_fitc_theoreticalKt
- Fits the theoretical characteristics of a MMAP(n,m) with a M3PP(2,m).
- M3pp2m_fitc_theoreticalKt - class in jline.api.mam.m3pp
- m3pp2m_fitc_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.String,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Fits a M3PP(2,m) from trace data using Matrix inputs.
- m3pp2m_fitc_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.String,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Fits a M3PP(2,m) from trace data using Matrix inputs.
- m3pp2m_fitc_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.String) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Fits a M3PP(2,m) from trace data using Matrix inputs.
- m3pp2m_fitc_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Fits a M3PP(2,m) from trace data using Matrix inputs.
- m3pp2m_fitc_trace(kotlin.DoubleArray,kotlin.IntArray,java.lang.String,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Fits a M3PP(2,m) from trace data using counting process characteristics.
- m3pp2m_fitc_trace(kotlin.DoubleArray,kotlin.IntArray,java.lang.String,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Fits a M3PP(2,m) from trace data using counting process characteristics.
- m3pp2m_fitc_trace(kotlin.DoubleArray,kotlin.IntArray,java.lang.String) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Fits a M3PP(2,m) from trace data using counting process characteristics.
- m3pp2m_fitc_trace(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Fits a M3PP(2,m) from trace data using counting process characteristics.
- M3pp2m_fitc_traceKt - class in jline.api.mam.m3pp
- M3pp2m_fitcKt - class in jline.api.mam.m3pp
- m3pp2m_interleave(java.util.List) - function in jline.api.mam.m3pp.M3pp2m_interleaveKt
- Computes the interleaved MMAP obtained by multiple M3PP(2,m).
- M3pp2m_interleaveKt - class in jline.api.mam.m3pp
- M3pp2mFitCountAlgo - class in jline.api.mam.m3pp
- M3Pp2M Fit Count algorithms
- M3pp2mFitCountApproxAgAlgo - class in jline.api.mam.m3pp
- M3Pp2M Fit Count Approx Ag algorithms
- M3pp2mFitCountApproxAgMulticlassAlgo - class in jline.api.mam.m3pp
- M3Pp2M Fit Count Approx Ag Multiclass algorithms
- M3pp2mFitCountApproxAlgo - class in jline.api.mam.m3pp
- M3Pp2M Fit Count Approx algorithms
- M3pp2mFitcTheoreticalAlgo - class in jline.api.mam.m3pp
- M3PP 2m fitc theoretical algorithms
- M3pp2mFitcTraceAlgo - class in jline.api.mam.m3pp
- M3PP 2m fitc trace algorithms
- M3pp2mInterleaveAlgo - class in jline.api.mam.m3pp
- M3Pp2M Interleave algorithms
- m3pp_interleave_fitc(kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.Array,kotlin.Array,java.lang.Double,java.lang.Double,kotlin.IntArray,java.lang.Boolean) - function in jline.api.mam.m3pp.M3pp_interleave_fitcKt
- Fits k second-order M3PPm_j and interleaves them into a M3PPm of order k+1, with m = sum_j=1^k m_j.
- m3pp_interleave_fitc_theoretical(jline.util.matrix.MatrixCell,java.lang.Double,java.lang.Double,kotlin.Array) - function in jline.api.mam.m3pp.M3pp_interleave_fitc_theoreticalKt
- Interleaves k M3PP to fit a multi-class MMAP using theoretical characteristics.
- M3pp_interleave_fitc_theoreticalKt - class in jline.api.mam.m3pp
- m3pp_interleave_fitc_trace(kotlin.DoubleArray,kotlin.IntArray,java.lang.Double,java.lang.Double,kotlin.Array) - function in jline.api.mam.m3pp.M3pp_interleave_fitc_traceKt
- Interleaves k M3PP to fit a multi-class trace with m classes.
- M3pp_interleave_fitc_traceKt - class in jline.api.mam.m3pp
- M3pp_interleave_fitcKt - class in jline.api.mam.m3pp
- m3pp_rand(java.lang.Integer,java.lang.Integer,java.lang.Long) - function in jline.api.mam.m3pp.M3pp_randKt
- Generates a random M3PP (Markovian Multi-class Point Process) with specified order and number of classes.
- m3pp_rand_targeted(java.lang.Integer,java.lang.Integer,java.lang.Double,java.lang.Double,java.lang.Long) - function in jline.api.mam.m3pp.M3pp_randKt
- Generates a random M3PP with specific characteristics.
- M3pp_randKt - class in jline.api.mam.m3pp
- m3pp_superpos_fitc(kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp_superpos_fitcKt
- Fits k second-order M3PPm_j and superposes them into a M3PPm of order k+1, with m = sum_j=1^k m_j.
- m3pp_superpos_fitc(kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_traceKt
- Superposes k individual M3PP processes.
- m3pp_superpos_fitc_theoretical(jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_theoreticalKt
- Fits k second-order M3PPm_j and superposes them into a M3PPm using theoretical count characteristics of the target process.
- M3pp_superpos_fitc_theoreticalKt - class in jline.api.mam.m3pp
- m3pp_superpos_fitc_trace(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_theoreticalKt
- Fits k second-order M3PPm_j and superposes them using trace data to determine theoretical characteristics.
- m3pp_superpos_fitc_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_traceKt
- Superposes k M3PP processes to fit a multi-class trace from Matrix inputs.
- m3pp_superpos_fitc_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_traceKt
- Superposes k M3PP processes to fit a multi-class trace from Matrix inputs.
- m3pp_superpos_fitc_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_traceKt
- Superposes k M3PP processes to fit a multi-class trace from Matrix inputs.
- m3pp_superpos_fitc_trace(kotlin.DoubleArray,kotlin.IntArray,java.lang.Double,java.lang.Double) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_traceKt
- Superposes k M3PP processes to fit a multi-class trace with m classes.
- m3pp_superpos_fitc_trace(kotlin.DoubleArray,kotlin.IntArray,java.lang.Double) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_traceKt
- Superposes k M3PP processes to fit a multi-class trace with m classes.
- m3pp_superpos_fitc_trace(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.m3pp.M3pp_superpos_fitc_traceKt
- Superposes k M3PP processes to fit a multi-class trace with m classes.
- M3pp_superpos_fitc_traceKt - class in jline.api.mam.m3pp
- M3pp_superpos_fitcKt - class in jline.api.mam.m3pp
- M3ppInterleaveFitCountAlgo - class in jline.api.mam.m3pp
- M3Pp Interleave Fit Count algorithms
- M3ppInterleaveFitCountTheoreticalAlgo - class in jline.api.mam.m3pp
- M3Pp Interleave Fit Count Theoretical algorithms
- M3ppInterleaveFitCountTraceAlgo - class in jline.api.mam.m3pp
- M3Pp Interleave Fit Count Trace algorithms
- M3ppRandAlgo - class in jline.api.mam.m3pp
- M3Pp Rand algorithms
- M3ppSuperposFitCountAlgo - class in jline.api.mam.m3pp
- M3Pp Superpos Fit Count algorithms
- M3ppSuperposFitCountTheoreticalAlgo - class in jline.api.mam.m3pp
- M3Pp Superpos Fit Count Theoretical algorithms
- M3ppSuperposFitcTraceAlgo - class in jline.api.mam.m3pp
- M3PP superposition fitc trace algorithms
- main(kotlin.Array) - function in jline.bench.AllBench
- main(kotlin.Array) - function in jline.bench.QuickBenchTest
- main(kotlin.Array) - function in jline.bench.cqn.BenchCQN_FCFS
- main(kotlin.Array) - function in jline.bench.cqn.BenchCQN_PS
- main(kotlin.Array) - function in jline.bench.cqn.BenchCQN_RM
- Main method with command line options
- main(kotlin.Array) - function in jline.bench.fj.BenchFJ_Closed
- main(kotlin.Array) - function in jline.bench.fj.BenchFJ_FCFS
- main(kotlin.Array) - function in jline.bench.fj.BenchFJ_Mixed
- main(kotlin.Array) - function in jline.bench.fj.BenchFJ_Nested
- main(kotlin.Array) - function in jline.bench.fj.BenchFJ_Open
- main(kotlin.Array) - function in jline.bench.fj.BenchFJ_PS
- main(kotlin.Array) - function in jline.bench.lqn.BenchLQN_Custom
- Main method for testing
- main(kotlin.Array) - function in jline.bench.lqn.BenchLQN_Default
- Main method for testing
- main(kotlin.Array) - function in jline.bench.lqn.BenchLQN_Fluid
- Main method for testing
- main(kotlin.Array) - function in jline.bench.lqn.BenchLQN_LQNS
- Main method for testing
- main(kotlin.Array) - function in jline.bench.lqn.BenchLQN_MVA
- Main method for testing
- main(kotlin.Array) - function in jline.bench.lqn.BenchLQN_NC
- Main method for testing
- main(kotlin.Array) - function in jline.bench.lqn.BenchLQN_SRVN
- Main method for testing
- main(kotlin.Array) - function in jline.bench.lqn.SimpleLQNBenchmark
- Main method for testing
- main(kotlin.Array) - function in jline.bench.mqn.BenchMQN_FCFS
- main(kotlin.Array) - function in jline.bench.mqn.BenchMQN_PS
- main(kotlin.Array) - function in jline.bench.oqn.BenchOQN_FCFS
- main(kotlin.Array) - function in jline.bench.oqn.BenchOQN_PS
- main(kotlin.Array) - function in jline.cli.LineCLI
- Main entry point for the LINE CLI
- main(kotlin.Array) - function in jline.cli.LineWebSocketClient
- The main method, which serves as the entry point for the program.
- main(kotlin.Array) - function in jline.cli.LineWebSocketServer
- The main method, which serves as the entry point for the server application.
- main(kotlin.Array) - function in jline.examples.NetworkGeneratorExample
- main(kotlin.Array) - function in jline.examples.java.AdvancedExamples
- main(kotlin.Array) - function in jline.examples.java.AllExamples
- main(kotlin.Array) - function in jline.examples.java.BasicExamples
- main(kotlin.Array) - function in jline.examples.java.GettingStarted
- Main method for testing and demonstrating getting started examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.AgentModelExamples
- Run all agent model examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.BASBlockingDebugTest
- main(kotlin.Array) - function in jline.examples.java.advanced.CDFRespTExamples
- Main method to run all CDF response time examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.CDFRespTModel
- Main method for testing and demonstrating response time CDF examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.CyclicPollingExamples
- Main method to run all cyclic polling examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.CyclicPollingModel
- Main method for testing and demonstrating cyclic polling examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.EnvBreakdownExample
- Main method to run all examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.FCRegionExamples
- main(kotlin.Array) - function in jline.examples.java.advanced.InitStateExamples
- Main method to run all initial state examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.LayeredCQExamples
- Main method to run all layered CQ examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.LoadDependentExamples
- Main method to run all load-dependent examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.LoadDependentModel
- Main method for testing and demonstrating load-dependent examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.RandomEnvExamples
- Main method to run all random environment examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.RandomEnvironmentModel
- Main method for testing and demonstrating random environment examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.StateDepRoutingExamples
- Main method to run all state-dependent routing examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.StateDepRoutingModel
- Main method for testing and demonstrating state-dependent routing examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.StateProbabilitiesExamples
- Main method to run all state probability examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.StateProbabilitiesModel
- Main method for testing and demonstrating state probability examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.SwitchoverTimesExamples
- Main method to run all switchover time examples.
- main(kotlin.Array) - function in jline.examples.java.advanced.SwitchoverTimesModel
- Main method for testing and demonstrating switchover times examples.
- main(kotlin.Array) - function in jline.examples.java.basic.CacheExamples
- main(kotlin.Array) - function in jline.examples.java.basic.CacheModel
- Main method for testing and demonstrating cache model examples.
- main(kotlin.Array) - function in jline.examples.java.basic.ClassSwitchExamples
- main(kotlin.Array) - function in jline.examples.java.basic.ClassSwitchingModel
- Main method for testing and demonstrating class switching examples.
- main(kotlin.Array) - function in jline.examples.java.basic.ClosedExamples
- Main method demonstrating all closed queueing network examples.
- main(kotlin.Array) - function in jline.examples.java.basic.ClosedModel
- Main method for testing and demonstrating closed model examples.
- main(kotlin.Array) - function in jline.examples.java.basic.ForkJoinExamples
- Main method demonstrating all fork-join examples.
- main(kotlin.Array) - function in jline.examples.java.basic.ForkJoinModel
- Main method for testing and demonstrating fork-join model examples.
- main(kotlin.Array) - function in jline.examples.java.basic.LayeredExamples
- Main method demonstrating selected layered network examples.
- main(kotlin.Array) - function in jline.examples.java.basic.LayeredModel
- Main method for testing and demonstrating layered model examples.
- main(kotlin.Array) - function in jline.examples.java.basic.MixedExamples
- Main method demonstrating all mixed queueing network examples.
- main(kotlin.Array) - function in jline.examples.java.basic.MixedModel
- Main method for testing and demonstrating mixed model examples.
- main(kotlin.Array) - function in jline.examples.java.basic.OpenExamples
- Main method demonstrating all open queueing network examples.
- main(kotlin.Array) - function in jline.examples.java.basic.OpenModel
- Main method for testing and demonstrating open model examples.
- main(kotlin.Array) - function in jline.examples.java.basic.PrioExamples
- Main method demonstrating all priority queueing examples.
- main(kotlin.Array) - function in jline.examples.java.basic.PrioModel
- Main method for testing and demonstrating priority examples.
- main(kotlin.Array) - function in jline.examples.java.basic.StochPetriNetExamples
- Main method demonstrating selected Petri net examples.
- main(kotlin.Array) - function in jline.examples.java.basic.StochPetriNetModel
- Main method for testing and demonstrating stochastic Petri net examples.
- main(kotlin.Array) - function in jline.examples.java.models.Gallery
- Main method for testing and demonstrating gallery examples.
- main(kotlin.Array) - function in jline.io.REPL
- Main method to start REPL
- main(kotlin.Array) - function in jline.lang.processes.DiscreteSampler
- main(kotlin.Array) - function in jline.lang.processes.Geometric
- main(kotlin.Array) - function in jline.lang.processes.Poisson
- main(kotlin.Array) - function in jline.lang.processes.Zipf
- main(kotlin.Array) - function in jline.lib.lti.customromberg
- main(kotlin.Array) - function in jline.lib.lti.euler
- main(kotlin.Array) - function in jline.lib.lti.gaverstehfest
- main() - function in jline.lib.mom.MainKt
- main() - function in jline.lib.mom.SimpleExampleKt
- main() - function in jline.lib.perm.PermExampleKt
- Example usage of the permanent computation algorithms.
- mainFJ(jline.lib.fjcodes.FJArrival,jline.lib.fjcodes.FJService,kotlin.DoubleArray,java.lang.Integer,java.lang.Integer,java.lang.String) - function in jline.lib.fjcodes.MainFJKt
- Convenience overload for single K value
- mainFJ(jline.lib.fjcodes.FJArrival,jline.lib.fjcodes.FJService,kotlin.DoubleArray,kotlin.IntArray,kotlin.IntArray,java.lang.String) - function in jline.lib.fjcodes.MainFJKt
- Compute response time percentiles for K-node Fork-Join queueFor K=1: Uses exact MAP/PH/1 analysis For K=2: Uses approximation from Section 4 of the paper For K>2: Uses logarithmic extrapolation from K=1 and K=2 results
- MainFJKt - class in jline.lib.fjcodes
- MainKt - class in jline.lib.mom
- MAM - enum entry in jline.lang.constant.SolverType
- MAM - class in jline.solvers.mam
- MAM is an alias for SolverMAM (Matrix Analytic Methods solver).
- mama1() - function in jline.lib.kpctoolbox.MAPCatalog
- MAMA1 - 2-state MAP model Source: mama1.
- mama2() - function in jline.lib.kpctoolbox.MAPCatalog
- MAMA2 - 2-state MAP model (variant of MAMA1) Source: mama2.
- mama3() - function in jline.lib.kpctoolbox.MAPCatalog
- MAMA3 - 2-state MAP model Source: mama3.
- mama4() - function in jline.lib.kpctoolbox.MAPCatalog
- MAMA4 - 2-state MAP model Source: mama4.
- mama5() - function in jline.lib.kpctoolbox.MAPCatalog
- MAMA5 - 2-state MAP model Source: mama5.
- mamap22_fit_bs_multiclass(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Object,kotlin.DoubleArray) - function in jline.api.mam.Mamap22_fit_multiclassKt
- Fits MAMAP(2,2) with backward moments (B) and sigma characteristics (S) for 2 classes.
- mamap22_fit_fs_multiclass(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Object,kotlin.DoubleArray) - function in jline.api.mam.Mamap22_fit_multiclassKt
- Fits MAMAP(2,2) with forward moments (F) and sigma characteristics (S) for 2 classes.
- mamap22_fit_gamma_bs(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Mamap22_fit_multiclassKt
- Fits MAMAP(2,2) with backward selection using gamma auto-correlation.
- mamap22_fit_gamma_bs_mmap(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mamap22_fit_multiclassKt
- Fits MAMAP(2,2) from an existing MMAP using backward selection with gamma auto-correlation.
- mamap22_fit_gamma_bs_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Mamap22_fit_multiclassKt
- Fits MAMAP(2,2) from a marked trace using backward selection with gamma auto-correlation.
- mamap22_fit_gamma_fs(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Mamap22_fit_multiclassKt
- Fits MAMAP(2,2) with forward selection using gamma auto-correlation.
- mamap22_fit_gamma_fs_mmap(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mamap22_fit_multiclassKt
- Fits MAMAP(2,2) from an existing MMAP using forward selection with gamma auto-correlation.
- mamap22_fit_gamma_fs_trace(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.Mamap22_fit_gamma_fs_traceKt
- Fits a MAMAP(2,2) using forward-start method from trace data.
- mamap22_fit_gamma_fs_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Mamap22_fit_multiclassKt
- Fits MAMAP(2,2) from a marked trace using forward selection with gamma auto-correlation.
- Mamap22_fit_gamma_fs_traceKt - class in jline.api.mam
- Mamap22_fit_multiclassKt - class in jline.api.mam
- Mamap22FitGammaFsTrace - class in jline.api.mam
- MAMAP 22 fit gamma fs trace algorithms
- Mamap22FitMulticlass - class in jline.api.mam
- MAMAP 22 fit multiclass algorithms
- mamap2m_can1_coefficients(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mamap2m_coefficientsKt
- Returns the coefficients used in the direct and inverse formulas for fitting a MAMAP(2,m) in first canonical form (gamma 0).
- mamap2m_can2_coefficients(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mamap2m_coefficientsKt
- Returns the coefficients used in the direct and inverse formulas for fitting a MAMAP(2,m) in second canonical form (gamma < 0).
- Mamap2m_coefficientsKt - class in jline.api.mam
- Mamap2m_fit - class in jline.api.mam
- Fits a MAMAP(2,m) (Markovian Arrival Process with Marked arrivals) that matches the provided characteristics.
- mamap2m_fit(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,jline.util.matrix.Matrix,kotlin.DoubleArray) - function in jline.api.mam.Mamap2m_fit.Companion
- mamap2m_fit(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,jline.util.matrix.Matrix) - function in jline.api.mam.Mamap2m_fit.Companion
- mamap2m_fit_fb_multiclass(jline.util.matrix.MatrixCell,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray) - function in jline.api.mam.Mamap2m_fit_fb_multiclassKt
- Performs approximate fitting of a MMAP given the underlying MAP, the class probabilities, forward moments, and backward moments.
- Mamap2m_fit_fb_multiclassKt - class in jline.api.mam
- mamap2m_fit_gamma_fb(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray) - function in jline.api.mam.Mamap2m_fit_gamma_fb_mmapKt
- Computes the second-order MAMAPm fitting the given ordinary moments, autocorrelation decay rate, class probabilities, forward moments, and backward moments.
- mamap2m_fit_gamma_fb_mmap(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mamap2m_fit_gamma_fb_mmapKt
- Fits a second-order acyclic MMAPm to match the characteristics of the input MMAP.
- Mamap2m_fit_gamma_fb_mmapKt - class in jline.api.mam
- mamap2m_fit_gamma_fb_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Mamap2m_fit_gamma_fb_traceKt
- Performs approximate fitting of a marked trace from Matrix inputs.
- mamap2m_fit_gamma_fb_trace(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.Mamap2m_fit_gamma_fb_traceKt
- Performs approximate fitting of a marked trace, yielding a second-order acyclic MMAP that matches the class probabilities, the forward and backward moments.
- Mamap2m_fit_gamma_fb_traceKt - class in jline.api.mam
- mamap2m_fit_mmap(jline.util.matrix.MatrixCell,kotlin.DoubleArray) - function in jline.api.mam.Mamap2m_fit_mmapKt
- Fits a MAPH(2,m) or MAMAP(2,m) that matches the characteristics of the input MMAP.
- mamap2m_fit_mmap(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mamap2m_fit_mmapKt
- Fits a MAPH(2,m) or MAMAP(2,m) that matches the characteristics of the input MMAP.
- Mamap2m_fit_mmapKt - class in jline.api.mam
- mamap2m_fit_trace(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.Mamap2m_fit_traceKt
- Fits a MAMAP(2,m) to trace data.
- Mamap2m_fit_traceKt - class in jline.api.mam
- Mamap2mCoefficients - class in jline.api.mam
- MAMAP 2m coefficients algorithms
- Mamap2mFitAlgo - class in jline.api.mam
- MAMAP 2m fit algorithms
- Mamap2mFitFbMulticlassAlgo - class in jline.api.mam
- MAMAP 2m fit fb multiclass algorithms
- Mamap2mFitGammaFbMmapAlgo - class in jline.api.mam
- MAMAP 2m fit gamma fb mmap algorithms
- Mamap2mFitGammaFbTraceAlgo - class in jline.api.mam
- MAMAP 2m fit gamma fb trace algorithms
- Mamap2mFitMmapAlgo - class in jline.api.mam
- MAMAP 2m fit mmap algorithms
- Mamap2mFitTraceAlgo - class in jline.api.mam
- MAMAP 2m fit trace algorithms
- MAMFJResult - class in jline.solvers.mam
- Result from Fork-Join analysis
- MAMOptions - class in jline.solvers.mam
- MAMResult - class in jline.solvers.mam
- MAP - enum entry in jline.lang.constant.ProcessType
- MAP - class in jline.lang.processes
- A Markovian Arrival Process
- map2_fit(java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Map2_fitKt
- Fits a 2-phase Markovian Arrival Process (MAP2) using the first three moments.
- map2_fit(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Map2_fitKt
- Fits a 2-phase Markovian Arrival Process (MAP2) to match the given moments and decay rate of the autocorrelation function.
- Map2_fitKt - class in jline.api.mam
- map2CorrelationBounds(kotlin.DoubleArray) - function in jline.lib.butools.map.MAP2CorrelationBoundsKt
- Returns the upper and lower correlation bounds for a MAP(2) given the three marginal moments.
- MAP2CorrelationBoundsKt - class in jline.lib.butools.map
- Map2FitAlgo - class in jline.api.mam
- Map2 Fit algorithms
- map2FromMoments(kotlin.DoubleArray,java.lang.Double) - function in jline.lib.butools.map.MAP2FromMomentsKt
- Returns a MAP(2) which has the same 3 marginal moments and lag-1 autocorrelation as given.
- MAP2FromMomentsKt - class in jline.lib.butools.map
- map2mmpp(kotlin.Array) - function in jline.api.mam.Map2mmppKt
- Convert a MAP to MMPP format by extracting generator matrix Q and rate matrix LAMBDA.
- Map2mmppKt - class in jline.api.mam
- map_acf(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_acfKt
- Computes the autocorrelation function (ACF) for a given MAP using a default lag of 1.
- map_acf(jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_acfKt
- Computes the autocorrelation function (ACF) for a given MAP at multiple lags.
- map_acf(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.api.mam.Map_acfKt
- Computes the autocorrelation function (ACF) for a given MAP at a specific lag.
- map_acf(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_acfKt
- Computes the autocorrelation function (ACF) for a given MAP using a default lag of 1.
- map_acf(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix) - function in jline.api.mam.Map_acfKt
- Computes the autocorrelation function (ACF) for a given MAP at multiple lags using a MatrixCell.
- map_acfc(jline.util.matrix.Matrix,jline.util.matrix.Matrix,kotlin.IntArray,java.lang.Double) - function in jline.api.mam.Map_acfcKt
- Computes the autocorrelation function coefficients (ACFC) for a MAP counting process.
- map_acfc(jline.util.matrix.MatrixCell,kotlin.IntArray,java.lang.Double) - function in jline.api.mam.Map_acfcKt
- Computes the autocorrelation function coefficients (ACFC) for a MAP counting process using a MatrixCell.
- Map_acfcKt - class in jline.api.mam
- Map_acfKt - class in jline.api.mam
- map_block(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.String) - function in jline.api.mam.Map_blockKt
- Constructs a MAP(2) or MAP(1) according to given moments and autocorrelation parameters.
- Map_blockKt - class in jline.api.mam
- map_ccdf_derivative(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.api.mam.Map_ccdf_derivativeKt
- Compute derivative at 0 of a MAP complementary CDF
- map_ccdf_derivative(jline.util.matrix.MatrixCell,java.lang.Integer) - function in jline.api.mam.Map_ccdf_derivativeKt
- Compute derivative at 0 of a MAP complementary CDFBased on: A.
- Map_ccdf_derivativeKt - class in jline.api.mam
- map_cdf(jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_cdfKt
- Computes the cumulative distribution function (CDF) of the inter-arrival times of a Markovian Arrival Process (MAP).
- map_cdf(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix) - function in jline.api.mam.Map_cdfKt
- Computes the cumulative distribution function (CDF) of the inter-arrival times of a MAP stored in a MatrixCell that contains the MAP's transition matrices.
- Map_cdfKt - class in jline.api.mam
- map_checkfeasible(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.api.mam.Map_checkfeasibleKt
- Check the feasibility of a MAP given separate D0 and D1 matrices.
- map_checkfeasible(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_checkfeasibleKt
- Check the feasibility of a MAP given separate D0 and D1 matrices.
- map_checkfeasible(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Map_checkfeasibleKt
- Check the feasibility of a MAP with detailed validation.
- Map_checkfeasibleKt - class in jline.api.mam
- map_count_mean(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Map_count_meanKt
- Computes the mean of the counting process over a specified interval length for a given Markovian Arrival Process (MAP).
- map_count_mean(jline.util.matrix.MatrixCell,kotlin.DoubleArray) - function in jline.api.mam.Map_count_meanKt
- Computes the mean of the counting process over multiple specified interval lengths for a given Markovian Arrival Process (MAP).
- Map_count_meanKt - class in jline.api.mam
- map_count_moment(jline.util.matrix.MatrixCell,java.lang.Double,java.lang.Integer) - function in jline.api.mam.Map_count_momentKt
- Computes power moments of counts at resolution t for a Markovian Arrival Process (MAP).
- map_count_moment(jline.util.matrix.MatrixCell,java.lang.Double,kotlin.IntArray) - function in jline.api.mam.Map_count_momentKt
- Computes multiple power moments of counts at resolution t for a MAP.
- Map_count_momentKt - class in jline.api.mam
- map_count_var(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Map_count_varKt
- Computes the variance of the counting process over a specified interval length for a given Markovian Arrival Process (MAP).
- map_count_var(jline.util.matrix.MatrixCell,kotlin.DoubleArray) - function in jline.api.mam.Map_count_varKt
- Computes the variance of the counting process over multiple specified interval lengths for a given Markovian Arrival Process (MAP).
- Map_count_varKt - class in jline.api.mam
- map_embedded(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_embeddedKt
- Computes the embedded discrete-time Markov chain (DTMC) matrix of a MAP.
- map_embedded(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_embeddedKt
- Computes the embedded discrete-time Markov chain (DTMC) matrix of a MAP given as a MatrixCell.
- Map_embeddedKt - class in jline.api.mam
- map_erlang(java.lang.Double,java.lang.Integer) - function in jline.api.mam.Map_erlangKt
- Fits an Erlang-k process as a Markovian Arrival Process (MAP).
- Map_erlangKt - class in jline.api.mam
- map_example1() - function in jline.lib.kpctoolbox.MAPCatalog
- MAP Example 1 Source: MAP_example1.
- map_exponential(java.lang.Double) - function in jline.api.mam.Map_exponentialKt
- Creates a Markovian Arrival Process (MAP) with an exponential inter-arrival time distribution.
- Map_exponentialKt - class in jline.api.mam
- map_feasblock(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.String) - function in jline.api.mam.Map_feasblockKt
- Fits the most similar feasible MAP when exact moment matching fails.
- Map_feasblockKt - class in jline.api.mam
- map_feastol() - function in jline.api.mam.Map_feastolKt
- Returns the feasibility tolerance for MAPs.
- Map_feastolKt - class in jline.api.mam
- map_gamma(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_gammaKt
- Computes the gamma parameter for a MAP, which is the autocorrelation decay rate.
- map_gamma(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_gammaKt
- Computes the gamma parameter for a MAP using a MatrixCell.
- map_gamma2(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_gamma2Kt
- Returns the largest non-unit eigenvalue (both real and imaginary parts) of the embedded Discrete-Time Markov Chain (DTMC) of a given Markovian Arrival Process (MAP).
- Map_gamma2Kt - class in jline.api.mam
- Map_gammaKt - class in jline.api.mam
- map_hyperexp(java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Map_hyperexpKt
- Fit a two-phase Hyper-exponential renewal process as a MAP
- Map_hyperexpKt - class in jline.api.mam
- map_idc(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_idcKt
- Computes the asymptotic index of dispersion (IDC) for a Markovian Arrival Process (MAP).
- map_idc(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_idcKt
- Computes the asymptotic index of dispersion (IDC) for a MAP stored in a MatrixCell that contains the MAP's transition matrices.
- Map_idcKt - class in jline.api.mam
- map_infgen(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_infgenKt
- Computes the infinitesimal generator matrix (Q) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).
- map_infgen(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_infgenKt
- Computes the infinitesimal generator matrix (Q) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).
- Map_infgenKt - class in jline.api.mam
- map_isfeasible(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_isfeasibleKt
- Checks if the provided MAP is feasible using a default tolerance.
- map_isfeasible(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Map_isfeasibleKt
- Checks if the provided MAP is feasible based on the given tolerance.
- Map_isfeasibleKt - class in jline.api.mam
- map_joint(jline.util.matrix.Matrix,jline.util.matrix.Matrix,kotlin.IntArray,kotlin.IntArray) - function in jline.api.mam.Map_jointKt
- Computes the joint moments of a Markovian Arrival Process (MAP).
- map_joint(jline.util.matrix.MatrixCell,kotlin.IntArray,kotlin.IntArray) - function in jline.api.mam.Map_jointKt
- Computes the joint moments of a Markovian Arrival Process (MAP).
- Map_jointKt - class in jline.api.mam
- map_jointpdf_derivative(jline.util.matrix.Matrix,jline.util.matrix.Matrix,kotlin.IntArray) - function in jline.api.mam.Map_jointpdf_derivativeKt
- Compute partial derivative at 0 of a MAP's joint PDF
- map_jointpdf_derivative(jline.util.matrix.MatrixCell,kotlin.IntArray) - function in jline.api.mam.Map_jointpdf_derivativeKt
- Compute partial derivative at 0 of a MAP's joint PDFBased on: A.
- Map_jointpdf_derivativeKt - class in jline.api.mam
- map_kpc(java.lang.Object,kotlin.Array) - function in jline.api.mam.Map_kpcKt
- Kronecker product composition of MAPs.
- map_kpc(kotlin.Array,kotlin.Array) - function in jline.api.mam.Map_kpcKt
- Convenience function for composing exactly two MAPs.
- map_kpc(java.util.List) - function in jline.api.mam.Map_kpcKt
- Convenience function for composing a list of MAPs.
- Map_kpcKt - class in jline.api.mam
- map_kurt(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_kurtKt
- Computes the kurtosis of the inter-arrival times in a Markovian Arrival Process (MAP).
- Map_kurtKt - class in jline.api.mam
- map_lambda(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_lambdaKt
- Computes the arrival rate (lambda) of a Markovian Arrival Process (MAP).
- map_lambda(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_lambdaKt
- Computes the arrival rate (lambda) of a Markovian Arrival Process (MAP) using matrices stored in a MatrixCell.
- Map_lambdaKt - class in jline.api.mam
- map_largemap() - function in jline.api.mam.Map_largemapKt
- Returns the maximum size considered for large MAPs.
- Map_largemapKt - class in jline.api.mam
- map_mark(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix) - function in jline.api.mam.Map_markKt
- Creates a Marked Markovian Arrival Process (MMAP) by marking a given Markovian Arrival Process (MAP) with additional phases based on specified marking probabilities.
- Map_markKt - class in jline.api.mam
- map_max(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_maxKt
- Computes the MAP that represents the maximum of two independent MAPs.
- Map_maxKt - class in jline.api.mam
- map_mean(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_meanKt
- Computes the mean inter-arrival time of a Markovian Arrival Process (MAP).
- map_mean(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_meanKt
- Computes the mean inter-arrival time of a Markovian Arrival Process (MAP) using matrices stored in a MatrixCell.
- Map_meanKt - class in jline.api.mam
- map_mixture(kotlin.DoubleArray,kotlin.Array) - function in jline.api.mam.Map_mixtureKt
- Creates a probabilistic mixture of Markovian Arrival Processes (MAPs).
- Map_mixtureKt - class in jline.api.mam
- map_moment(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.api.mam.Map_momentKt
- Computes the raw moments of the inter-arrival times of a Markovian Arrival Process (MAP).
- map_moment(jline.util.matrix.MatrixCell,java.lang.Integer) - function in jline.api.mam.Map_momentKt
- Computes the raw moments of the inter-arrival times of a MAP stored in a MatrixCell that contains the MAP's transition matrices.
- Map_momentKt - class in jline.api.mam
- map_normalize(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_normalizeKt
- Sanitizes the (D0, D1) matrices of a Markovian Arrival Process (MAP) by ensuring all elements are non-negative and adjusting diagonal elements.
- map_normalize(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_normalizeKt
- Sanitizes the (D0, D1) matrices of a Markovian Arrival Process (MAP) stored in a MatrixCell.
- Map_normalizeKt - class in jline.api.mam
- map_pdf(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.api.mam.Map_pdfKt
- Computes the probability density function (PDF) of a MAP at a single time point.
- map_pdf(jline.util.matrix.Matrix,jline.util.matrix.Matrix,kotlin.DoubleArray) - function in jline.api.mam.Map_pdfKt
- Computes the probability density function (PDF) of a MAP at specified time points.
- map_pdf(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Map_pdfKt
- Computes the probability density function (PDF) of a MAP at a single time point.
- map_pdf(jline.util.matrix.MatrixCell,kotlin.DoubleArray) - function in jline.api.mam.Map_pdfKt
- Computes the probability density function (PDF) of a MAP at specified time points.
- Map_pdfKt - class in jline.api.mam
- map_pie(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_pieKt
- Computes the steady-state probability vector of the embedded Discrete Time Markov Chain (DTMC) associated with a Markovian Arrival Process (MAP).
- map_pie(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_pieKt
- Computes the steady-state probability vector of the embedded DTMC of a MAP stored in a MatrixCell that contains the MAP's transition matrices.
- Map_pieKt - class in jline.api.mam
- map_piq(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_piqKt
- Computes the steady-state vector (pi) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).
- map_piq(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_piqKt
- Computes the steady-state vector (pi) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).
- Map_piqKt - class in jline.api.mam
- map_pntiter(kotlin.Array,java.lang.Integer,java.lang.Double,java.lang.Integer) - function in jline.api.mam.Map_pntiterKt
- Probability of having exactly na arrivals within time interval t using iterative method.
- Map_pntiterKt - class in jline.api.mam
- map_pntquad(kotlin.Array,java.lang.Integer,java.lang.Double) - function in jline.api.mam.Map_pntquadKt
- Compute MAP point process probabilities using ODE quadrature method.
- Map_pntquadKt - class in jline.api.mam
- map_prob(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_probKt
- Computes the equilibrium distribution of the underlying continuous-time Markov chain for a MAP.
- map_prob(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_probKt
- Computes the equilibrium distribution of the underlying continuous-time Markov chain for a MAP.
- Map_probKt - class in jline.api.mam
- map_rand() - function in jline.api.mam.Map_randKt
- Generates a random Markovian Arrival Process (MAP) with 2 states.
- map_rand(java.lang.Integer) - function in jline.api.mam.Map_randKt
- Generates a random Markovian Arrival Process (MAP) with K states.
- Map_randKt - class in jline.api.mam
- map_randn() - function in jline.api.mam.Map_randnKt
- Generates a random Markovian Arrival Process (MAP) with 2 states using normal distribution with mean 1 and standard deviation 2.
- map_randn(java.lang.Integer,java.lang.Double,java.lang.Double) - function in jline.api.mam.Map_randnKt
- Generates a random Markovian Arrival Process (MAP) with K states using normal distribution.
- Map_randnKt - class in jline.api.mam
- map_renewal(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_renewalKt
- Creates a renewal MAP by removing all correlations from the input MAP.
- map_renewal(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_renewalKt
- Creates a renewal MAP by removing all correlations from the input MAP.
- Map_renewalKt - class in jline.api.mam
- map_sample(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Long,java.util.Random) - function in jline.api.mam.Map_sampleKt
- Generates samples of inter-arrival times from a MAP using a specified number of samples and a random generator.
- map_sample(jline.util.matrix.MatrixCell,java.lang.Long,java.util.Random) - function in jline.api.mam.Map_sampleKt
- Generates samples of inter-arrival times from a MAP using a specified number of samples and a random generator.
- Map_sampleKt - class in jline.api.mam
- map_scale(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.api.mam.Map_scaleKt
- Rescales the mean inter-arrival time of a Markovian Arrival Process (MAP) to a specified new mean.
- map_scale(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Map_scaleKt
- Rescales the mean inter-arrival time of a MAP stored in a MatrixCell that contains the MAP's transition matrices.
- Map_scaleKt - class in jline.api.mam
- map_scv(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_scvKt
- Computes the squared coefficient of variation (SCV) of the inter-arrival times of a Markovian Arrival Process (MAP).
- map_scv(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_scvKt
- Computes the squared coefficient of variation (SCV) of the inter-arrival times of a MAP stored in a MatrixCell that contains the MAP's transition matrices.
- Map_scvKt - class in jline.api.mam
- map_skew(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_skewKt
- Computes the skewness of the inter-arrival times for a MAP.
- map_skew(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_skewKt
- Computes the skewness of the inter-arrival times for a MAP using a MatrixCell.
- Map_skewKt - class in jline.api.mam
- map_stochcomp(jline.util.matrix.Matrix,jline.util.matrix.Matrix,kotlin.IntArray) - function in jline.api.mam.Map_stochcompKt
- Performs stochastic complementation on a MAP by eliminating specified states.
- map_stochcomp(jline.util.matrix.MatrixCell,kotlin.IntArray) - function in jline.api.mam.Map_stochcompKt
- Performs stochastic complementation on a MAP by eliminating specified states.
- Map_stochcompKt - class in jline.api.mam
- map_sum(jline.util.matrix.MatrixCell,java.lang.Integer) - function in jline.api.mam.Map_sumKt
- Computes the Markovian Arrival Process (MAP) representing the sum of
nidentical MAPs. - map_sumind(kotlin.Array) - function in jline.api.mam.Map_sumindKt
- Computes the Markovian Arrival Process (MAP) representing the sum of
nindependent MAPs. - Map_sumindKt - class in jline.api.mam
- Map_sumKt - class in jline.api.mam
- map_super(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_superKt
- Creates a superposition of two Markovian Arrival Processes (MAPs) to form a new MAP.
- Map_superKt - class in jline.api.mam
- map_timereverse(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_timereverseKt
- Computes the time-reversed MAP of a given MAP.
- Map_timereverseKt - class in jline.api.mam
- map_var(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_varKt
- Computes the variance of the inter-arrival times for a MAP.
- map_var(jline.util.matrix.MatrixCell) - function in jline.api.mam.Map_varKt
- Computes the variance of the inter-arrival times for a MAP using a MatrixCell.
- map_varcount(jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Map_varcountKt
- Computes the variance of the counts in a MAP over multiple time periods.
- map_varcount(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.api.mam.Map_varcountKt
- Computes the variance of the counts in a MAP over a time period t.
- map_varcount(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix) - function in jline.api.mam.Map_varcountKt
- Computes the variance of the counts in a MAP over multiple time periods using a MatrixCell.
- map_varcount(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Map_varcountKt
- Computes the variance of the counts in a MAP over a time period t using a MatrixCell.
- Map_varcountKt - class in jline.api.mam
- Map_varKt - class in jline.api.mam
- MapAcfAlgo - class in jline.api.mam
- MAP autocorrelation function algorithms
- MapAcfcAlgo - class in jline.api.mam
- MAP autocorrelation function coefficients algorithms
- MapBlockAlgo - class in jline.api.mam
- MAP block matrix construction algorithms
- MAPCatalog - class in jline.lib.kpctoolbox
- Complete catalog of MAP (Markovian Arrival Process) models migrated from MATLAB Location: /home/gcasale/code/matlab/maps/ This class provides static methods to create all MAP and MMPP2 models from the maps directory including those from .mat files and .m function files.
- MapCcdfDerivativeAlgo - class in jline.api.mam
- MAP complementary CDF derivative algorithms
- MapCdf - class in jline.api.mam
- MAP cumulative distribution function algorithms
- MapCheckfeasibleAlgo - class in jline.api.mam
- MAP checkfeasible algorithms
- MapCountMeanAlgo - class in jline.api.mam
- MAP counting process mean algorithms
- MapCountMoment - class in jline.api.mam
- MAP count moment algorithms
- MapCountVar - class in jline.api.mam
- MAP count var algorithms
- MAPDcOptions - class in jline.lib.qmam
- Options for MAP/D/c queue analysis
- MAPDcResult - class in jline.lib.qmam
- Result of MAP/D/c queue analysis
- mape(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.bench.BenchmarkUtils
- Calculate Mean Absolute Percentage Error (MAPE) Wrapper for Utils.
- mape(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.Utils
- Return mean absolute percentage error of approx with respect to exact
- MapEmbeddedAlgo - class in jline.api.mam
- MAP embedded algorithms
- MapErlangAlgo - class in jline.api.mam
- MAP erlang algorithms
- mapeWithNanMean(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.Utils
- Polymorphic version that returns both MAPE and nanMean.
- MapExponentialAlgo - class in jline.api.mam
- MAP exponential algorithms
- MapFeasblockAlgo - class in jline.api.mam
- MAP feasblock algorithms
- MapFeastolAlgo - class in jline.api.mam
- MAP feastol algorithms
- MapGamma2 - class in jline.api.mam
- MAP gamma2 algorithms
- MapGammaAlgo - class in jline.api.mam
- MAP gamma algorithms
- maph2m_fit(java.lang.Double,java.lang.Double,java.lang.Double,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Maph2m_fitKt
- Computes the second-order MAPHm fitting the given ordinary moments (of order up to three), the class probabilities (always fitted exactly) and the backward moments.
- maph2m_fit_mmap(jline.util.matrix.MatrixCell) - function in jline.api.mam.Maph2m_fit_mmapKt
- Fits an MMAPm with a second-order MAPHm that matches the class probabilities (always fitted exactly) and the backward moments.
- Maph2m_fit_mmapKt - class in jline.api.mam
- maph2m_fit_multiclass(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Maph2m_fitKt
- Fits MAPH(2,m) for multiple classes given underlying APH(2), class probabilities, and backward moments.
- maph2m_fit_multiclass(java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,kotlin.DoubleArray) - function in jline.api.mam.Maph2m_fit_multiclassKt
- Fits a multi-class MAPH(2,m) model to given multi-class characteristics.
- Maph2m_fit_multiclassKt - class in jline.api.mam
- maph2m_fit_trace(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.Maph2m_fit_traceKt
- Fits a multi-class MAPH(2,m) model to trace data with class labels.
- maph2m_fit_trace_timestamps(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.Maph2m_fit_traceKt
- Fits a multi-class MAPH(2,m) model to trace data with arrival time stamps and class labels.
- Maph2m_fit_traceKt - class in jline.api.mam
- maph2m_fitc_approx(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double) - function in jline.api.mam.Maph2m_fitc_approxKt
- Fits a second-order Marked MMPP using approximate count-based characteristics.
- Maph2m_fitc_approxKt - class in jline.api.mam
- maph2m_fitc_exact(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double) - function in jline.api.mam.Maph2m_fitc_theoreticalKt
- Exact fitting method using all available characteristics
- maph2m_fitc_theoretical(jline.util.matrix.MatrixCell,java.lang.String) - function in jline.api.mam.Maph2m_fitc_theoreticalKt
- Fits the theoretical characteristics of a MMAP(n,m) with a M3PP(2,m).
- Maph2m_fitc_theoreticalKt - class in jline.api.mam
- Maph2m_fitKt - class in jline.api.mam
- Maph2mFitAlgo - class in jline.api.mam
- MAPH 2m fit algorithms
- Maph2mFitCountApproxAlgo - class in jline.api.mam
- MAPH 2m fit count approx algorithms
- Maph2mFitCountTheoreticalAlgo - class in jline.api.mam
- MAPH 2m fit count theoretical algorithms
- Maph2mFitMmapAlgo - class in jline.api.mam
- MAPH 2m fit mmap algorithms
- Maph2mFitMulticlass - class in jline.api.mam
- MAPH 2m fit multiclass algorithms
- Maph2mFitTraceAlgo - class in jline.api.mam
- MAPH 2m fit trace algorithms
- maph2ObjectiveFunction(kotlin.DoubleArray,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Double) - function in jline.api.mam.Maph2m_fitc_approxKt
- Objective function for MAPH(2) parameter optimization
- MapHyperexpAlgo - class in jline.api.mam
- MAP hyperexp algorithms
- MapIdcAlgo - class in jline.api.mam
- MAP idc algorithms
- MapInfgenAlgo - class in jline.api.mam
- MAP infgen algorithms
- MapIsfeasibleAlgo - class in jline.api.mam
- MAP isfeasible algorithms
- MapJointAlgo - class in jline.api.mam
- MAP joint algorithms
- MapJointpdfDerivativeAlgo - class in jline.api.mam
- MAP jointpdf derivative algorithms
- MapKpcAlgo - class in jline.api.mam
- MAP kpc algorithms
- MapKurtAlgo - class in jline.api.mam
- MAP kurt algorithms
- MapLambda - class in jline.api.mam
- MAP arrival rate computation algorithms.
- MapLargemapAlgo - class in jline.api.mam
- MAP largemap algorithms
- MAPM1PSCdfRespT - class in jline.api.map
- MAP/M/1-PS Sojourn Time DistributionComputes the complementary distribution function of sojourn time in a MAP/M/1 processor-sharing queue using the algorithm from:Masuyama, H.
- MAPMAP1Options - class in jline.lib.qmam
- Options for MAP/MAP/1 queue analysis
- MAPMAP1Result - class in jline.lib.qmam
- Result of MAP/MAP/1 queue analysis
- MapMarkAlgo - class in jline.api.mam
- MAP mark algorithms
- MapMaxAlgo - class in jline.api.mam
- MAP max algorithms
- MAPMcOptions - class in jline.lib.qmam
- Options for MAP/M/c queue analysis
- MAPMcResult - class in jline.lib.qmam
- Result of MAP/M/c queue analysis
- MapMean - class in jline.api.mam
- MAP mean inter-arrival time computation algorithms.
- MapMixture - class in jline.api.mam
- MAP mixture algorithms
- MapMoment - class in jline.api.mam
- MAP moment algorithms
- MapNormalizeAlgo - class in jline.api.mam
- MAP normalize algorithms
- MapPdfAlgo - class in jline.api.mam
- MAP pdf algorithms
- MapPieAlgo - class in jline.api.mam
- MAP pie algorithms
- MapPiqAlgo - class in jline.api.mam
- MAP piq algorithms
- MapPntiterAlgo - class in jline.api.mam
- MAP pntiter algorithms
- MapPntquad - class in jline.api.mam
- MAP pntquad algorithms
- MapProbAlgo - class in jline.api.mam
- MAP prob algorithms
- Mapqn_bnd_lr - class in jline.api.mapqn
- Implementation of bnd_linearreduction_new.
- Mapqn_bnd_lr_mva - class in jline.api.mapqn
- Implementation of bnd_mvaversion.
- Mapqn_bnd_lr_mvaKt - class in jline.api.mapqn
- Mapqn_bnd_lr_pf - class in jline.api.mapqn
- Implementation of bnd_linearreduction_pf.
- Mapqn_bnd_lr_pf.PFParameters - class in jline.api.mapqn.Mapqn_bnd_lr_pf
- Parameters for the Product Form linear reduction model
- Mapqn_bnd_lr_pfKt - class in jline.api.mapqn
- Mapqn_bnd_qr - class in jline.api.mapqn
- Implementation of bnd_quadraticreduction.
- Mapqn_bnd_qr_delay - class in jline.api.mapqn
- Implementation of bnd_quadraticreduction_delay.
- Mapqn_bnd_qr_delay.QuadraticDelayParameters - class in jline.api.mapqn.Mapqn_bnd_qr_delay
- Parameters for the quadratic reduction delay model
- Mapqn_bnd_qr_delayKt - class in jline.api.mapqn
- Mapqn_bnd_qr_ld - class in jline.api.mapqn
- Implementation of bnd_quadraticreduction_ld.
- Mapqn_bnd_qr_ld.QuadraticLDParameters - class in jline.api.mapqn.Mapqn_bnd_qr_ld
- Parameters for the quadratic reduction load-dependent model
- Mapqn_lpmodel - class in jline.api.mapqn
- Base class for representing MAPQN Linear Programming models
- Mapqn_lpmodel.LinearConstraintBuilder - class in jline.api.mapqn.Mapqn_lpmodel
- Helper class for building linear constraints
- Mapqn_parameters - class in jline.api.mapqn
- Base class for MAPQN model parameters
- Mapqn_parameters_factory - class in jline.api.mapqn
- Factory class for creating Mapqn_parameters from NetworkStruct.
- Mapqn_qr_bounds_bas - class in jline.api.mapqn
- Implementation of qrf_bas.
- Mapqn_qr_bounds_bas_parameters - class in jline.api.mapqn
- Parameters for QR Bounds BAS (Blocking After Service) model
- Mapqn_qr_bounds_rsrd - class in jline.api.mapqn
- Implementation of qrf_rsrd.
- Mapqn_qr_bounds_rsrd_parameters - class in jline.api.mapqn
- Parameters for QR Bounds RSRD (Repetitive Service Random Destination) model
- Mapqn_solution - class in jline.api.mapqn
- Solution container for MAPQN linear programs
- MapRandAlgo - class in jline.api.mam
- MAP rand algorithms
- MapRandnAlgo - class in jline.api.mam
- MAP randn algorithms
- MapRenewal - class in jline.api.mam
- MAP renewal algorithms
- MAPRepresentation - class in jline.lib.butools.map
- Result class for RandomMAP.
- MapSampleAlgo - class in jline.api.mam
- MAP sample algorithms
- MapScaleAlgo - class in jline.api.mam
- MAP scale algorithms
- MapScvAlgo - class in jline.api.mam
- MAP scv algorithms
- MapSkewAlgo - class in jline.api.mam
- MAP skew algorithms
- MapStochcompAlgo - class in jline.api.mam
- MAP stochcomp algorithms
- MapSumAlgo - class in jline.api.mam
- MAP sum algorithms
- MapSumindAlgo - class in jline.api.mam
- MAP sumind algorithms
- MapSuperAlgo - class in jline.api.mam
- MAP super algorithms
- MapTimereverseAlgo - class in jline.api.mam
- MAP timereverse algorithms
- MapVar - class in jline.api.mam
- MAP variance computation algorithms.
- MapVarcountAlgo - class in jline.api.mam
- MAP varcount algorithms
- marginal(jline.lib.perm.PermSolver,kotlin.IntArray,java.lang.Boolean) - function in jline.lib.perm.NetworkNoThink
- Compute marginal probability of a state using specified solver.
- marginal(jline.lib.perm.PermSolver,kotlin.IntArray,java.lang.Boolean) - function in jline.lib.perm.NetworkThink
- Compute marginal probability including think time effects.
- marginalDistributionFromDMAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.lib.butools.dmap.MarginalDistributionFromDMAPKt
- Returns the discrete phase type distributed marginal distribution of a discrete Markovian arrival process.
- MarginalDistributionFromDMAPKt - class in jline.lib.butools.dmap
- marginalDistributionFromDMMAP(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.lib.butools.dmap.MarginalDistributionFromDMMAPKt
- Returns the discrete phase type distributed marginal distribution of a discrete marked Markovian arrival process.
- marginalDistributionFromDMMAP(kotlin.Array,java.lang.Double) - function in jline.lib.butools.dmap.MarginalDistributionFromDMMAPKt
- Overload for Array<Matrix>.
- MarginalDistributionFromDMMAPKt - class in jline.lib.butools.dmap
- marginalDistributionFromDMRAP(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.lib.butools.dmap.MarginalDistributionFromDMRAPKt
- Returns the matrix geometrically distributed marginal distribution of a discrete marked rational arrival process.
- marginalDistributionFromDMRAP(kotlin.Array,java.lang.Double) - function in jline.lib.butools.dmap.MarginalDistributionFromDMRAPKt
- Overload for Array<Matrix>.
- MarginalDistributionFromDMRAPKt - class in jline.lib.butools.dmap
- marginalDistributionFromDRAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.lib.butools.dmap.MarginalDistributionFromDRAPKt
- Returns the matrix geometrically distributed marginal distribution of a discrete rational arrival process.
- MarginalDistributionFromDRAPKt - class in jline.lib.butools.dmap
- marginalDistributionFromMAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.butools.map.MarginalDistributionFromMAPKt
- Returns the phase type distributed marginal distribution of a Markovian arrival process.
- MarginalDistributionFromMAPKt - class in jline.lib.butools.map
- marginalDistributionFromRAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.butools.map.MarginalDistributionFromMAPKt
- Returns the matrix exponential distributed marginal distribution of a rational arrival process.
- marginalMomentsFromDMAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer,java.lang.Double) - function in jline.lib.butools.dmap.MarginalMomentsFromDMAPKt
- Returns the moments of the marginal distribution of a discrete Markovian arrival process.
- marginalMomentsFromDMAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.dmap.MarginalMomentsFromDMAPKt
- Returns the moments of the marginal distribution of a discrete Markovian arrival process.
- marginalMomentsFromDMAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.butools.dmap.MarginalMomentsFromDMAPKt
- Returns the moments of the marginal distribution of a discrete Markovian arrival process.
- MarginalMomentsFromDMAPKt - class in jline.lib.butools.dmap
- marginalMomentsFromDMMAP(jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Double) - function in jline.lib.butools.dmap.MarginalMomentsFromDMMAPKt
- Returns the moments of the marginal distribution of a discrete marked Markovian arrival process.
- marginalMomentsFromDMMAP(kotlin.Array,java.lang.Integer,java.lang.Double) - function in jline.lib.butools.dmap.MarginalMomentsFromDMMAPKt
- Overload for Array<Matrix>.
- MarginalMomentsFromDMMAPKt - class in jline.lib.butools.dmap
- marginalMomentsFromDMRAP(jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Double) - function in jline.lib.butools.dmap.MarginalMomentsFromDMRAPKt
- Returns the moments of the marginal distribution of a discrete marked rational arrival process.
- marginalMomentsFromDMRAP(kotlin.Array,java.lang.Integer,java.lang.Double) - function in jline.lib.butools.dmap.MarginalMomentsFromDMRAPKt
- Overload for Array<Matrix>.
- MarginalMomentsFromDMRAPKt - class in jline.lib.butools.dmap
- marginalMomentsFromDRAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer,java.lang.Double) - function in jline.lib.butools.dmap.MarginalMomentsFromDRAPKt
- Returns the moments of the marginal distribution of a discrete rational arrival process.
- MarginalMomentsFromDRAPKt - class in jline.lib.butools.dmap
- marginalMomentsFromMAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.map.MarginalMomentsFromMAPKt
- Returns the moments of the marginal distribution of a Markovian arrival process.
- marginalMomentsFromMAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.butools.map.MarginalMomentsFromMAPKt
- Returns the moments of the marginal distribution of a Markovian arrival process.
- MarginalMomentsFromMAPKt - class in jline.lib.butools.map
- marginalMomentsFromRAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.map.MarginalMomentsFromMAPKt
- Returns the moments of the marginal distribution of a rational arrival process.
- marginalMomentsFromTrace(kotlin.DoubleArray,java.lang.Integer) - function in jline.lib.butools.trace.MarginalMomentsFromTraceKt
- Returns the marginal moments of a trace.
- MarginalMomentsFromTraceKt - class in jline.lib.butools.trace
- marginalMomentsFromWeightedTrace(kotlin.DoubleArray,kotlin.DoubleArray,java.lang.Integer) - function in jline.lib.butools.trace.MarginalMomentsFromTraceKt
- Returns the marginal moments of a weighted trace.
- Marked - class in jline.lang.processes
- An abstract class for marked point processes
- MarkedMAP - class in jline.lang.processes
- A Marked Markovian Arrival Process
- MarkedMarkovProcess - class in jline.lang.processes
- A class for continuous time Markov chain where transitions are labeled
- MarkedMMPP - class in jline.lang.processes
- A Marked Markov-Modulated Poisson Process (M3PP)
- MarkovChain - class in jline.lang.processes
- A class for a discrete time Markov chain
- Markovian - class in jline.lang.processes
- An abstract class for a Markovian distribution
- MarkovianRepresentation - class in jline.lib.butools.reptrans
- Result class for ExtendToMarkovian.
- MarkovModulated - class in jline.lang.processes
- An abstract class for a Markov-modulated point-process
- MarkovProcess - class in jline.lang.processes
- A class for a continuous time Markov chain
- matchRow(java.util.List,kotlin.Array) - function in jline.util.Maths
- Finds the index of a matching row in a list.
- matchrow(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Returns the index of the row in the matrix that exactly matches the given row vector.
- MatFileUtils - class in jline.util
- Utility class for saving matrices and workspaces to MATLAB .mat files using the MFL (MATLAB File Library) for Java.
- Maths - class in jline.util
- Mathematical functions and utilities.
- Maths.laplaceApproxComplexReturn - class in jline.util.Maths
- Maths.laplaceApproxReturn - class in jline.util.Maths
- Maths.simplexQuadResult - class in jline.util.Maths
- Matrix - class in jline.util.matrix
- A sparse matrix data structure supporting linear algebra functions similar to those available in MATLAB.
- matrixAddVector(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Adds a vector to each row or column of the matrix, depending on the vector's orientation.
- MatrixCell - class in jline.util.matrix
- An ordered collection of Matrix objects that provides indexing and manipulation operations.
- MatrixEquation - class in jline.util.matrix
- A wrapper class that extends EJML's Equation functionality to work seamlessly with jline.util.matrix.Matrix objects.
- matrixExp(jline.util.matrix.Matrix) - function in jline.util.Maths
- Adapted from jblas and IHMC Original documentation: Calculate matrix exponential of a square matrix.
- MatrixMethodAnalyzer - class in jline.solvers.fluid.analyzers
- MatrixMethodODE - class in jline.solvers.fluid.handlers
- max(double,double) - function in jline.util.Maths
- Returns the max of two numbers.
- maxAbsDiff(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Computes the maximum relative absolute difference between corresponding elements of two matrices: max(abs((a - b) / b)).
- maxErrorOnSum(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.bench.BenchmarkUtils
- Calculate maximum error on sum for queue length metrics Returns max absolute error relative to sum of each column Similar to MATLAB: max(abs(exact-approx))/sum(exact)
- maxpos(kotlin.DoubleArray) - function in jline.lib.kpctoolbox.basic.BasicUtilsKt
- Finds the position of the maximum value in a vector.
- maxpos(kotlin.DoubleArray,java.lang.Integer) - function in jline.lib.kpctoolbox.basic.BasicUtilsKt
- Finds the positions of the n largest values in a vector.
- maxpos(jline.util.matrix.Matrix) - function in jline.util.Maths
- Returns the position of the maximum value in a vector.
- maxpos(jline.util.matrix.Matrix,int) - function in jline.util.Maths
- Returns the positions of the n largest values in a vector.
- maxStates(int) - function in jline.solvers.mam.MAMOptions
- MC - enum entry in jline.bench.fj.BenchFJ_Template.FJConfig
- MC2 - enum entry in jline.bench.fj.BenchFJ_Template.FJConfig
- MC3 - enum entry in jline.bench.fj.BenchFJ_Template.FJConfig
- MC4 - enum entry in jline.bench.fj.BenchFJ_Template.FJConfig
- ME - enum entry in jline.lang.constant.ProcessType
- ME - class in jline.lang.processes
- A Matrix Exponential (ME) distribution.
- me_mean(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Me_meanKt
- Computes the mean of a Matrix Exponential (ME) distribution.
- me_mean(jline.util.matrix.MatrixCell) - function in jline.api.mam.Me_meanKt
- Computes the mean of a Matrix Exponential (ME) distribution using matrices stored in a MatrixCell.
- Me_meanKt - class in jline.api.mam
- me_oqn(java.lang.Integer,java.lang.Integer,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix,kotlin.Array,jline.api.nc.MeOqnOptions) - function in jline.api.nc.Me_oqnKt
- Maximum Entropy algorithm for Open Queueing Networks.
- Me_oqnKt - class in jline.api.nc
- me_pie(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Me_pieKt
- Computes the stationary initial probability for an ME/RAP distribution.
- me_pie(jline.util.matrix.MatrixCell) - function in jline.api.mam.Me_pieKt
- Computes the stationary initial probability for an ME/RAP distribution using matrices stored in a MatrixCell.
- Me_pieKt - class in jline.api.mam
- me_sample(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Long,java.util.Random) - function in jline.api.mam.Me_sampleKt
- Generates random samples from a Matrix Exponential (ME) distribution using inverse CDF interpolation.
- me_sample(jline.util.matrix.MatrixCell,java.lang.Long,java.util.Random) - function in jline.api.mam.Me_sampleKt
- Generates random samples from an ME distribution using matrices stored in a MatrixCell.
- Me_sampleKt - class in jline.api.mam
- me_scv(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Me_scvKt
- Computes the squared coefficient of variation (SCV) of a Matrix Exponential (ME) distribution.
- me_scv(jline.util.matrix.MatrixCell) - function in jline.api.mam.Me_scvKt
- Computes the squared coefficient of variation (SCV) of an ME distribution using matrices stored in a MatrixCell.
- Me_scvKt - class in jline.api.mam
- me_var(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Me_varKt
- Computes the variance of a Matrix Exponential (ME) distribution.
- me_var(jline.util.matrix.MatrixCell) - function in jline.api.mam.Me_varKt
- Computes the variance of a Matrix Exponential (ME) distribution using matrices stored in a MatrixCell.
- Me_varKt - class in jline.api.mam
- mean() - function in jline.lang.processes.Coxian
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Coxian
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Det
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Distribution
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Distribution
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Erlang
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Exp
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Gamma
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.HyperExp
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Lognormal
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.PH
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Pareto
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Uniform
- Kotlin-style property alias for getMean()
- mean() - function in jline.lang.processes.Weibull
- Kotlin-style property alias for getMean()
- meanCol() - function in jline.util.matrix.Matrix
- Computes the mean of each column.
- meanRow() - function in jline.util.matrix.Matrix
- Computes the mean of each row.
- meFromMoments(kotlin.DoubleArray) - function in jline.lib.butools.ph.MEFromMomentsKt
- Creates a matrix-exponential distribution that has the same moments as given.
- MEFromMomentsKt - class in jline.lib.butools.ph
- MeMean - class in jline.api.mam
- ME mean computation algorithms documentation marker for Dokka.
- meOpen() - function in jline.solvers.nc.SolverNC
- Maximum Entropy algorithm for Open Queueing Networks.
- meOpen() - function in jline.solvers.nc.SolverNC
- Maximum Entropy algorithm for Open Queueing Networks.
- meOpen(jline.api.nc.MeOqnOptions) - function in jline.solvers.nc.SolverNC
- Maximum Entropy algorithm for Open Queueing Networks with custom options.
- meOpen(jline.api.nc.MeOqnOptions) - function in jline.solvers.nc.SolverNC
- Maximum Entropy algorithm for Open Queueing Networks with custom options.
- MeOqn - class in jline.api.nc
- ME OQN algorithms documentation marker for Dokka.
- MeOqnOptions - class in jline.api.nc
- Options for the ME OQN algorithm.
- MeOqnResult - class in jline.api.nc
- Result of the ME OQN algorithm.
- MePie - class in jline.api.mam
- ME initial probability computation algorithms documentation marker for Dokka.
- MERepresentation - class in jline.lib.butools.ph
- Result class for MEFromMoments containing both alpha and A.
- merge(java.util.List) - function in jline.lang.Ensemble
- Creates a union Network from a list of Networks.
- merge(java.util.List) - function in jline.lang.Ensemble
- Creates a union Network from a list of Networks.
- merge(jline.lang.Ensemble) - function in jline.lang.Ensemble
- Creates a union Network from all Networks in an ensemble.
- merge(jline.lang.Ensemble) - function in jline.lang.Ensemble
- Creates a union Network from all Networks in an ensemble.
- merge(int,int) - function in jline.lang.processes.GMM
- Merges two components into one using moment matching.
- MeSample - class in jline.api.mam
- ME sampling algorithms documentation marker for Dokka.
- MeScv - class in jline.api.mam
- ME SCV computation algorithms documentation marker for Dokka.
- method(java.lang.String) - function in jline.solvers.SolverOptions
- Sets the solution method/algorithm (builder pattern).
- method(java.lang.String) - function in jline.solvers.SolverOptions
- Sets the solution method/algorithm (builder pattern).
- MethodStepHandler - class in jline.solvers.fluid.handlers
- Metric - class in jline.lang
- Constants for specifying a Metric
- MetricsResult - class in jline.solvers.mam.handlers
- MetricType - class in jline.lang.constant
- Constants for specifying a type of metric
- MeVar - class in jline.api.mam
- ME variance computation algorithms documentation marker for Dokka.
- mfilename(java.lang.Object) - function in jline.io.InputOutputKt
- mg1_cr(jline.util.matrix.Matrix,jline.lib.smc.MG1CROptions) - function in jline.lib.smc.MG1_piKt
- Computes the G matrix using Cyclic Reduction for M/G/1-type chains.
- mg1_eg(jline.util.matrix.Matrix,java.lang.Boolean) - function in jline.lib.smc.MG1_EGKt
- Determines G directly if rank(A0)=1 for M/G/1-type Markov chains.
- MG1_EGKt - class in jline.lib.smc
- mg1_fi(jline.util.matrix.Matrix,jline.lib.smc.MG1FIOptions) - function in jline.lib.smc.MG1_FIKt
- Functional Iterations for M/G/1-Type Markov Chains.
- MG1_FIKt - class in jline.lib.smc
- mg1_pi(jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.lib.smc.MG1PiOptions) - function in jline.lib.smc.MG1_piKt
- Computes the stationary distribution of an M/G/1-type Markov chain.
- MG1_piKt - class in jline.lib.smc
- mg1_shifts(jline.util.matrix.Matrix,java.lang.String) - function in jline.lib.smc.MG1_ShiftsKt
- Applies the shift technique to an M/G/1-type block matrix.
- MG1_ShiftsKt - class in jline.lib.smc
- MG1CROptions - class in jline.lib.smc
- Options for MG1_CR solver
- MG1FIOptions - class in jline.lib.smc
- Options for MG1_FI solver
- mg1FundamentalMatrix(java.util.List,java.lang.Double,java.lang.Integer,jline.lib.butools.mam.MG1Method) - function in jline.lib.butools.mam.MG1FundamentalMatrixKt
- Returns matrix G corresponding to the M/G/1 type Markov chain defined by matrices A.
- MG1FundamentalMatrixKt - class in jline.lib.butools.mam
- MG1Method - class in jline.lib.butools.mam
- Method for solving M/G/1 type matrix equation.
- MG1PiOptions - class in jline.lib.smc
- Options for MG1_pi solver
- MG1ShiftResult - class in jline.lib.smc
- Result of MG1 shift transformation
- mgFromMoments(kotlin.DoubleArray) - function in jline.lib.butools.dph.MGFromMomentsKt
- Creates a matrix-geometric distribution that has the same moments as given.
- MGFromMomentsKt - class in jline.lib.butools.dph
- MGRepresentation - class in jline.lib.butools.dph
- Result class for MGFromMoments containing both alpha and A.
- min(double,double) - function in jline.util.Maths
- Returns the min of two numbers.
- MINIMAL - enum entry in jline.api.sn.ValidationLevel
Minimal validation - only basic bounds checking.
Index bounds checking
NaN detection
- minpos(kotlin.DoubleArray) - function in jline.lib.kpctoolbox.basic.BasicUtilsKt
- Finds the position of the minimum value in a vector.
- minpos(kotlin.DoubleArray,java.lang.Integer) - function in jline.lib.kpctoolbox.basic.BasicUtilsKt
- Finds the positions of the n smallest values in a vector.
- minpos(jline.util.matrix.Matrix) - function in jline.util.Maths
- Returns the position of the minimum value in a vector.
- minpos(jline.util.matrix.Matrix,int) - function in jline.util.Maths
- Returns the positions of the n smallest values in a vector.
- MixedExamples - class in jline.examples.java.basic
- Mixed queueing network examples mirroring the Kotlin notebooks in mixedQN.
- MixedModel - class in jline.examples.java.basic
- Examples of mixed queueing networks
- mixture(jline.lang.processes.GMM,jline.lang.processes.GMM,double,double) - function in jline.lang.processes.GMM
- Creates a mixture of two GMMs with specified weights.
- mm1() - function in jline.examples.java.advanced.FCRegionModel
- Simple M/M/1 without FCR (for comparison).
- mm1k() - function in jline.examples.java.advanced.FCRegionModel
- M/M/1/K using queue capacity (K=2, for comparison).
- mmap_backward_moment(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.api.mam.Mmap_backward_momentKt
- Computes the backward moments of an MMAP for specified orders with normalization.
- Mmap_backward_momentKt - class in jline.api.mam
- Mmap_compress - class in jline.api.mam
- Compresses an MMAP using various approximation methods.
- mmap_compress(kotlin.Array,java.lang.String) - function in jline.api.mam.Mmap_compress.Companion
- mmap_compress(kotlin.Array) - function in jline.api.mam.Mmap_compress.Companion
- mmap_count_idc(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Mmap_count_idcKt
- Computes the index of dispersion for counts (IDC) for a Markovian Arrival Process with marked arrivals (MMAP) over a time period.
- Mmap_count_idcKt - class in jline.api.mam
- mmap_count_lambda(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_count_lambdaKt
- Computes the arrival rate vector of the counting process for the given Marked MAP (MMAP).
- Mmap_count_lambdaKt - class in jline.api.mam
- mmap_count_mcov(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Mmap_count_mcovKt
- Computes the count covariance between each pair of classes at a given time scale.
- mmap_count_mcov(kotlin.Array,java.lang.Double) - function in jline.api.mam.Mmap_count_mcovKt
- Computes the count covariance between each pair of classes at a given time scale.
- Mmap_count_mcovKt - class in jline.api.mam
- mmap_count_mean(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Mmap_count_meanKt
- Computes the mean count vector of events of different types in a Markovian Arrival Process with marked arrivals (MMAP) over a time period.
- mmap_count_mean_class(jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Double) - function in jline.api.mam.Maph2m_fitc_theoreticalKt
- Helper functions for MMAP analysis - these would be implemented with full MMAP theory
- Mmap_count_meanKt - class in jline.api.mam
- mmap_count_var(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Mmap_count_varKt
- Computes the variance of the count vector of events of different types in a Markovian Arrival Process with marked arrivals (MMAP) over a time period.
- mmap_count_var_class(jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Double) - function in jline.api.mam.Maph2m_fitc_theoreticalKt
- mmap_count_var_others(jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Double) - function in jline.api.mam.Maph2m_fitc_theoreticalKt
- Mmap_count_varKt - class in jline.api.mam
- mmap_cross_modulate(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Mmap_modulateKt
- Cross-modulation between two MMAPs.
- mmap_cross_moment(jline.util.matrix.MatrixCell,java.lang.Integer) - function in jline.api.mam.Mmap_cross_momentKt
- Computes the k-th cross-moment matrix for a given MMAP.
- Mmap_cross_momentKt - class in jline.api.mam
- mmap_embedded(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_embeddedKt
- Computes the embedded chain of an MMAP.
- Mmap_embeddedKt - class in jline.api.mam
- mmap_exponential(jline.util.matrix.Matrix) - function in jline.api.mam.Mmap_exponentialKt
- Fits a Markovian Arrival Process with marked arrivals (MMAP) with a single state based on the given arrival rates for each job class.
- mmap_exponential(jline.util.matrix.Matrix,java.lang.Integer) - function in jline.api.mam.Mmap_exponentialKt
- Fits an order-n Markovian Arrival Process with marked arrivals (MMAP) based on the given arrival rates for each job class.
- Mmap_exponentialKt - class in jline.api.mam
- mmap_forward_moment(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.api.mam.Mmap_forward_momentKt
- Computes the forward moments of an MMAP for specified orders with normalization.
- mmap_forward_moment(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix) - function in jline.api.mam.Mmap_forward_momentKt
- Computes the forward moments of an MMAP for specified orders with normalization.
- Mmap_forward_momentKt - class in jline.api.mam
- mmap_hide(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix) - function in jline.api.mam.Mmap_hideKt
- Hides specified types of arrivals in a Markovian Arrival Process with marked arrivals (MMAP).
- Mmap_hideKt - class in jline.api.mam
- mmap_idc(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_idcKt
- Computes the asymptotic index of dispersion for counts (IDC) for a Markovian Arrival Process with marked arrivals (MMAP).
- Mmap_idcKt - class in jline.api.mam
- mmap_isfeasible(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_isfeasibleKt
- Checks the feasibility of a Markovian Arrival Process with marked arrivals (MMAP).
- Mmap_isfeasibleKt - class in jline.api.mam
- mmap_issym(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Mmap_issymKt
- Checks if an MMAP is symmetric.
- Mmap_issymKt - class in jline.api.mam
- mmap_lambda(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_lambdaKt
- Alias for mmap_count_lambda.
- Mmap_lambdaKt - class in jline.api.mam
- mmap_maps(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_mapsKt
- Extracts K Markovian Arrival Processes (MAPs) from a given MMAP, one for each class.
- Mmap_mapsKt - class in jline.api.mam
- mmap_mark(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix) - function in jline.api.mam.Mmap_markKt
- Converts a Markovian Arrival Process with marked arrivals (MMAP) into a new MMAP with redefined classes based on a given probability matrix.
- Mmap_markKt - class in jline.api.mam
- mmap_max(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_maxKt
- Computes the element-wise maximum of two MMAPs.
- mmap_max_multiple(java.util.List) - function in jline.api.mam.Mmap_maxKt
- Computes the element-wise maximum of multiple MMAPs.
- Mmap_maxKt - class in jline.api.mam
- mmap_mixture(jline.util.matrix.Matrix,java.util.Map) - function in jline.api.mam.Mmap_mixtureKt
- Creates a mixture of MMAPs using the given weights (alpha) and MAPs.
- mmap_mixture_fit(java.lang.Object,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Mmap_mixture_fitKt
- Fits a mixture of Markovian Arrival Processes (MMAPs) to match the given cross-moments.
- mmap_mixture_fit(jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Mmap_mixture_fit_traceKt
- Fits a MMAP using mixture of PH distributions based on moments.
- mmap_mixture_fit_mmap(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_mixture_fit_mmapKt
- Fits a mixture of Markovian Arrival Processes (MMAPs) to match the given moments.
- Mmap_mixture_fit_mmapKt - class in jline.api.mam
- mmap_mixture_fit_trace(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.mam.Mmap_mixture_fit_traceKt
- Fits a MMAP with m classes using a mixture of m^2 PH-distributions from Matrix inputs.
- mmap_mixture_fit_trace(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.Mmap_mixture_fit_traceKt
- Fits a MMAP with m classes using a mixture of m^2 PH-distributions from trace data.
- Mmap_mixture_fit_traceKt - class in jline.api.mam
- Mmap_mixture_fitKt - class in jline.api.mam
- mmap_mixture_order2(java.util.List,kotlin.DoubleArray) - function in jline.api.mam.Mmap_mixture_order2Kt
- Creates a second-order MMAP mixture from a collection of MMAPs.
- mmap_mixture_order2_optimal(java.util.List,kotlin.DoubleArray) - function in jline.api.mam.Mmap_mixture_order2Kt
- Creates a second-order MMAP mixture with automatic weight selection.
- Mmap_mixture_order2Kt - class in jline.api.mam
- Mmap_mixtureKt - class in jline.api.mam
- mmap_modulate(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.api.mam.Mmap_modulateKt
- Modulates an MMAP by another MMAP, creating a compound arrival process.
- mmap_modulate_time_varying(jline.util.matrix.MatrixCell,kotlin.jvm.functions.Function1,java.lang.Double,java.lang.Integer) - function in jline.api.mam.Mmap_modulateKt
- Time-varying modulation of an MMAP.
- Mmap_modulateKt - class in jline.api.mam
- mmap_normalize(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_normalizeKt
- Normalizes a Markovian Arrival Process with marked arrivals (MMAP) to ensure feasibility.
- Mmap_normalizeKt - class in jline.api.mam
- mmap_pc(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_pcKt
- Computes the proportion of counts (PC) for each type in a Markovian Arrival Process with marked arrivals (MMAP).
- Mmap_pcKt - class in jline.api.mam
- Mmap_pie - class in jline.api.mam
- Computes the steady-state probability vector for each class in an MMAP.
- mmap_pie(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_pie.Companion
- mmap_pie(kotlin.Array) - function in jline.api.mam.Mmap_pie.Companion
- Overloaded version for Array<Matrix> input
- mmap_rand(java.lang.Integer,java.lang.Integer) - function in jline.api.mam.Mmap_randKt
- Generates a random MMAP (Marked Markovian Arrival Process) with a given order and number of classes.
- Mmap_randKt - class in jline.api.mam
- mmap_sample(jline.util.matrix.MatrixCell,java.lang.Long,java.util.Random) - function in jline.api.mam.Mmap_sampleKt
- Generates samples of inter-arrival times and event types from a MMAP using a specified number of samples.
- Mmap_sampleKt - class in jline.api.mam
- mmap_scale(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix) - function in jline.api.mam.Mmap_scaleKt
- Overloaded function for backward compatibility
- mmap_scale(jline.util.matrix.MatrixCell,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.api.mam.Mmap_scaleKt
- Changes the mean inter-arrival time of a Markovian Arrival Process with marked arrivals (MMAP).
- Mmap_scaleKt - class in jline.api.mam
- mmap_shorten(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_shortenKt
- Converts an MMAP representation from M3A format to BUTools format.
- Mmap_shortenKt - class in jline.api.mam
- mmap_sigma(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_sigmaKt
- Computes one-step class transition probabilities for a Marked Markovian Arrival Process (MMAP).
- mmap_sigma(kotlin.Array) - function in jline.api.mam.Mmap_sigmaKt
- Computes one-step class transition probabilities for a Marked Markovian Arrival Process (MMAP).
- mmap_sigma2(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_sigma2Kt
- Computes two-step class transition probabilities for a Markovian Arrival Process (MMAP).
- mmap_sigma2_cell(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_sigma2Kt
- Computes two-step class transition probabilities for a Markovian Arrival Process (MMAP).
- Mmap_sigma2Kt - class in jline.api.mam
- Mmap_sigmaKt - class in jline.api.mam
- mmap_sum(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_sumKt
- Computes the sum of two MMAPs, creating a superposition process.
- mmap_sum_multiple(java.util.List) - function in jline.api.mam.Mmap_sumKt
- Computes the sum of multiple MMAPs.
- mmap_sum_selective(java.util.List,java.util.List) - function in jline.api.mam.Mmap_sumKt
- Selective sum - only sum specific classes from each MMAP.
- mmap_sum_weighted(java.util.List,kotlin.DoubleArray) - function in jline.api.mam.Mmap_sumKt
- Weighted sum of MMAPs with scaling factors.
- Mmap_sumKt - class in jline.api.mam
- mmap_super(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_superKt
- Combines a list of MMAPs into one superposed MMAP.
- mmap_super(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_superKt
- Combines two MMAPs into one superposed MMAP using the default option.
- mmap_super(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell,java.lang.String) - function in jline.api.mam.Mmap_superKt
- Combines two MMAPs into one superposed MMAP.
- mmap_super_safe(java.util.Map,java.lang.Integer,java.lang.String) - function in jline.api.mam.Mmap_super_safeKt
- Mmap_super_safeKt - class in jline.api.mam
- Mmap_superKt - class in jline.api.mam
- mmap_timereverse(jline.util.matrix.MatrixCell) - function in jline.api.mam.Mmap_timereverseKt
- Computes the time-reversed version of a Markovian Arrival Process with marked arrivals (MMAP).
- Mmap_timereverseKt - class in jline.api.mam
- MmapBackwardMomentAlgo - class in jline.api.mam
- MMAP backward moment algorithms
- MmapCompressAlgo - class in jline.api.mam
- MMAP compress algorithms
- MmapCountIdcAlgo - class in jline.api.mam
- MMAP count idc algorithms
- MmapCountLambdaAlgo - class in jline.api.mam
- MMAP count lambda algorithms
- MmapCountMcovAlgo - class in jline.api.mam
- MMAP count mcov algorithms
- MmapCountMeanAlgo - class in jline.api.mam
- MMAP count mean algorithms
- MmapCountVarAlgo - class in jline.api.mam
- MMAP count var algorithms
- MmapCrossMomentAlgo - class in jline.api.mam
- MMAP cross moment algorithms
- MmapEmbeddedAlgo - class in jline.api.mam
- MMAP embedded algorithms
- MmapExponentialAlgo - class in jline.api.mam
- MMAP exponential algorithms
- MmapForwardMomentAlgo - class in jline.api.mam
- MMAP forward moment algorithms
- MmapHideAlgo - class in jline.api.mam
- MMAP hide algorithms
- MmapIdcAlgo - class in jline.api.mam
- MMAP idc algorithms
- MmapIsfeasibleAlgo - class in jline.api.mam
- MMAP isfeasible algorithms
- MmapIssymAlgo - class in jline.api.mam
- MMAP issym algorithms
- MMAPKPHK1Options - class in jline.lib.qmam
- Options for MMAPK/PHK/1 queue analysis
- MMAPKPHK1Result - class in jline.lib.qmam
- Result of MMAPK/PHK/1 queue analysis
- MmapLambdaAlgo - class in jline.api.mam
- MMAP lambda algorithms
- MmapMapsAlgo - class in jline.api.mam
- MMAP maps algorithms
- MmapMark - class in jline.api.mam
- MMAP mark algorithms
- MmapMaxAlgo - class in jline.api.mam
- MMAP max algorithms
- MmapMixtureAlgo - class in jline.api.mam
- MMAP mixture algorithms
- MmapMixtureFitAlgo - class in jline.api.mam
- MMAP mixture fit algorithms
- MmapMixtureFitMmapAlgo - class in jline.api.mam
- MMAP mixture fit mmap algorithms
- MmapMixtureFitTraceAlgo - class in jline.api.mam
- MMAP mixture fit trace algorithms
- MmapMixtureOrder2Algo - class in jline.api.mam
- MMAP mixture order2 algorithms
- MmapModulateAlgo - class in jline.api.mam
- MMAP modulate algorithms
- MmapNormalizeAlgo - class in jline.api.mam
- MMAP normalize algorithms
- MmapPcAlgo - class in jline.api.mam
- MMAP pc algorithms
- MMAPPH1FCFS(jline.util.matrix.MatrixCell,java.util.Map,java.util.Map,java.lang.Integer,java.lang.Integer,java.lang.Integer,jline.util.matrix.Matrix,java.lang.Boolean,java.lang.Boolean,java.lang.Double,jline.util.matrix.Matrix) - function in jline.lib.butools.MMAPPH1FCFSKt
- MMAPPH1FCFSKt - class in jline.lib.butools
- MMAPPH1NPPR(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Integer,java.lang.Integer,jline.util.matrix.Matrix,java.lang.Double,java.lang.Integer,jline.util.matrix.Matrix) - function in jline.lib.butools.MMAPPH1NPPRKt
- MMAPPH1NPPRKt - class in jline.lib.butools
- MMAPPH1PRPR(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Integer,java.lang.Integer,jline.util.matrix.Matrix,java.lang.Double,java.lang.Integer,jline.util.matrix.Matrix) - function in jline.lib.butools.MMAPPH1PRPRKt
- Analyzes multi-class MMAPK/PHK/1 queue with preemptive-resume (PRPR) priority.
- MMAPPH1PRPRKt - class in jline.lib.butools
- MmapPieAlgo - class in jline.api.mam
- MMAP pie algorithms
- MmapRandAlgo - class in jline.api.mam
- MMAP rand algorithms
- MmapSampleAlgo - class in jline.api.mam
- MMAP sample algorithms
- MmapScale - class in jline.api.mam
- MMAP scale algorithms
- MmapShortenAlgo - class in jline.api.mam
- MMAP shorten algorithms
- MmapSigma2Algo - class in jline.api.mam
- MMAP sigma2 algorithms
- MmapSigmaAlgo - class in jline.api.mam
- MMAP sigma algorithms
- MmapSum - class in jline.api.mam
- MMAP sum algorithms
- MmapSuperAlgo - class in jline.api.mam
- MMAP super algorithms
- MmapSuperSafeAlgo - class in jline.api.mam
- MMAP super safe algorithms
- MmapTimereverse - class in jline.api.mam
- MMAP timereverse algorithms
- MMDP - class in jline.lang.processes
- A Markov-Modulated Deterministic Process (MMDP) for fluid queue modeling.
- MMPP2 - enum entry in jline.lang.constant.ProcessType
- MMPP2 - class in jline.lang.processes
- A Markovian-modulated Poisson Process with 2 states
- mmpp2_fit(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fitKt
- Fits a 2-phase Markovian Arrival Process (MMPP2) to match the given first three moments and a fourth parameter G2.
- mmpp2_fit(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Fits a 2-state MMPP (MMPP2) to match first three moments and lag-1 autocorrelation.
- mmpp2_fit1(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fit1Kt
- Fits a 2-phase Markov Modulated Poisson Process (MMPP2) based on the specified parameters.
- mmpp2_fit1(java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Fits MMPP2 using only moments (no autocorrelation).
- Mmpp2_fit1Kt - class in jline.api.mam
- mmpp2_fit2(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Fits MMPP2 using moments and lag-1 ACF.
- mmpp2_fit3(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Fits MMPP2 using moments and lag-2 ACF (approximation).
- mmpp2_fit4(java.lang.Double,java.lang.Double,java.lang.Double,kotlin.DoubleArray) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Fits MMPP2 using moments and multiple ACF lags.
- Mmpp2_fit_count - class in jline.api.mam
- Fits a MMPP(2) according to Heffes and Lucantoni, 1986.
- mmpp2_fit_count(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fit_count.Companion
- Mmpp2_fit_count_approx - class in jline.api.mam
- Fits a second-order Marked MMPP using optimization.
- mmpp2_fit_count_approx(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fit_count_approx.Companion
- mmpp2_fit_example() - function in jline.lib.kpctoolbox.MAPCatalog
- MMPP2 Fit Example Source: MMPP2_fit_example.
- mmpp2_fit_mu00(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fitKt
- mmpp2_fit_mu11(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fitKt
- mmpp2_fit_q01(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fitKt
- mmpp2_fit_q10(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fitKt
- Mmpp2_fitc - class in jline.api.mam
- Fits a MMPP(2) according to Heffes and Lucantoni, 1986.
- mmpp2_fitc(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fitc.Companion
- mmpp2_fitc(java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Fits MMPP2 from counting process statistics.
- Mmpp2_fitc_approx - class in jline.api.mam
- Fits a second-order Marked MMPP using optimization.
- mmpp2_fitc_approx(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.api.mam.Mmpp2_fitc_approx.Companion
- mmpp2_fitc_approx(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Fits MMPP2 from counting process with approximation.
- mmpp2_fitc_theoretical(java.lang.Double,java.lang.Double,java.lang.Double,java.lang.Double) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Theoretical MMPP2 fitting from counting process.
- Mmpp2_fitKt - class in jline.api.mam
- mmpp2_lrd() - function in jline.lib.kpctoolbox.MAPCatalog
- MMPP2 LRD (Long Range Dependent) model Source: MMPP2_lrd.
- mmpp2_markov_example() - function in jline.lib.kpctoolbox.MAPCatalog
- MMPP2 Markov Example Source: MMPP2_markov_example.
- mmpp2_noacf() - function in jline.lib.kpctoolbox.MAPCatalog
- MMPP2 NoACF (No Autocorrelation Function) model Source: MMPP2_noacf.
- mmpp2_simple() - function in jline.lib.kpctoolbox.MAPCatalog
- MMPP2 Simple Example Source: MMPP2_simple.
- mmpp2_srd() - function in jline.lib.kpctoolbox.MAPCatalog
- MMPP2 SRD (Short Range Dependent) model Source: MMPP2_srd.
- mmpp2_trace_example() - function in jline.lib.kpctoolbox.MAPCatalog
- MMPP2 Trace Example Source: MMPP2_trace_example.
- Mmpp2Fit1Algo - class in jline.api.mam
- Mmpp2 Fit1 algorithms
- Mmpp2FitAlgo - class in jline.api.mam
- Mmpp2 Fit algorithms
- Mmpp2FitcAlgo - class in jline.api.mam
- Mmpp2 Fitc algorithms
- Mmpp2FitCountApproxAlgo - class in jline.api.mam
- Mmpp2 Fit Count Approx algorithms
- mmpp_rand() - function in jline.api.mam.Mmpp_randKt
- Generates a random Markov Modulated Poisson Process (MMPP) with 2 states.
- mmpp_rand(java.lang.Integer) - function in jline.api.mam.Mmpp_randKt
- Generates a random Markov Modulated Poisson Process (MMPP) with K states.
- mmpp_rand(jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Long) - function in jline.lib.kpctoolbox.mmpp.MMPPKt
- Generates random samples from an MMPP.
- Mmpp_randKt - class in jline.api.mam
- MMPPKt - class in jline.lib.kpctoolbox.mmpp
- MmppRandAlgo - class in jline.api.mam
- Mmpp Rand algorithms
- mmt(jline.lang.Network) - function in jline.lang.ModelAdapter
- Fork-Join Transform approach with default forkLambda parameter
- mmt(jline.lang.Network,jline.util.matrix.Matrix) - function in jline.lang.ModelAdapter
- Fork-Join Transform approach to evaluate queueing networks including fork-join systems.
- MockOtlpReceiver - class in jline.streaming
- Mock OTLP gRPC receiver for testing streaming functionality.
- Mode - class in jline.lang
- Superclass representing a class of jobs
- mode(jline.streaming.StreamingOptions.StreamMode) - function in jline.streaming.StreamingOptions
- Set the streaming mode.
- ModeEvent - class in jline.lang
- A mode event occurring in a Network.
- Model - class in jline.lang
- Class representing a model supported by the library
- model() - function in jline.solvers.NetworkSolver
- model() - function in jline.solvers.NetworkSolver
- ModelAdapter - class in jline.lang
- Static class to transform and adapt models, providing functionality for: - Creating tagged job models for response time analysis - Fork-join network transformations (formerly from FJ.
- ModelAdapter.AggregateChainResult - class in jline.lang.ModelAdapter
- Result of aggregating chains in a model
- ModelAdapter.DeaggInfo - class in jline.lang.ModelAdapter
- Deaggregation information for converting chain-level results back to class-level
- ModelAdapter.TaggedChainResult - class in jline.lang.ModelAdapter
- Result of tagging a chain in a model
- ModelAnalyzer - class in jline.solvers.auto
- Helper class to analyze model characteristics for solver selection
- ModifyMode - class in jline.api.sn
- Modification mode for SN setter methods.
- moments() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getMoments()
- moments() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getMoments()
- moments(org.apache.commons.math3.analysis.UnivariateFunction,java.lang.Integer) - function in jline.lib.lti.cme
- momentsFromDPH(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.dph.MomentsFromDPHKt
- Returns the first K moments of a discrete phase-type distribution.
- momentsFromDPH(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.butools.dph.MomentsFromDPHKt
- Returns the first K moments of a discrete phase-type distribution.
- momentsFromDPH(kotlin.DoubleArray,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.dph.MomentsFromDPHKt
- Overload for DoubleArray alpha.
- momentsFromDPH(kotlin.DoubleArray,jline.util.matrix.Matrix) - function in jline.lib.butools.dph.MomentsFromDPHKt
- Overload for DoubleArray alpha.
- MomentsFromDPHKt - class in jline.lib.butools.dph
- momentsFromME(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.ph.MomentsFromMEKt
- Returns the first K moments of a matrix-exponential distribution.
- momentsFromME(kotlin.DoubleArray,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.ph.MomentsFromMEKt
- Overload for DoubleArray alpha.
- MomentsFromMEKt - class in jline.lib.butools.ph
- momentsFromMG(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.dph.MomentsFromMGKt
- Returns the first K moments of a matrix-geometric distribution.
- momentsFromMG(kotlin.DoubleArray,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.dph.MomentsFromMGKt
- Overload for DoubleArray alpha.
- MomentsFromMGKt - class in jline.lib.butools.dph
- momentsFromPH(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.ph.MomentsFromMEKt
- Returns the first K moments of a phase-type distribution.
- momentsFromPH(kotlin.DoubleArray,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.lib.butools.ph.MomentsFromMEKt
- Overload for DoubleArray alpha.
- MomsFromFactorialMoms(jline.util.matrix.Matrix) - function in jline.lib.butools.MomsFromFactorialMomsKt
- MomsFromFactorialMomsKt - class in jline.lib.butools
- momsFromHankelMoms(jline.util.matrix.Matrix) - function in jline.lib.butools.MomsFromHankelMomsKt
- Returns the raw moments given the Hankel moments.
- MomsFromHankelMomsKt - class in jline.lib.butools
- momsFromNormMoms(jline.util.matrix.Matrix) - function in jline.lib.butools.MomsFromNormMomsKt
- Returns the raw moments given the normalized moments.
- MomsFromNormMomsKt - class in jline.lib.butools
- momsFromReducedMoms(jline.util.matrix.Matrix) - function in jline.lib.butools.MomsFromReducedMomsKt
- Returns the raw moments given the reduced moments.
- MomsFromReducedMomsKt - class in jline.lib.butools
- MomSolver - class in jline.lib.mom.solver
- Method of Moments (MOM) solver for queueing network analysisThis solver implements the MOM algorithm for computing performance measures of closed queueing networks with multiple classes and servers.
- MomSolverResult - class in jline.lib.mom.solver
- Result container for MOM solver computations
- MomUtils - class in jline.lib.mom.util
- MOM-specific utility functions for combinatorial operations Complements the existing jline.util.
- mqn_basic() - function in jline.examples.java.basic.MixedExamples
- Basic mixed open/closed network (mqn_basic.ipynb).
- mqn_basic() - function in jline.examples.java.basic.MixedModel
- Simple mixed open/closed network with delay and PS queue.
- mqn_multiserver_fcfs() - function in jline.examples.java.basic.MixedExamples
- Mixed network with FCFS multi-server queues (mqn_multiserver_fcfs.ipynb).
- mqn_multiserver_fcfs() - function in jline.examples.java.basic.MixedModel
- Mixed network similar to example 2 but with FCFS scheduling.
- mqn_multiserver_ps() - function in jline.examples.java.basic.MixedExamples
- Mixed network with PS multi-server queues (mqn_multiserver_ps.ipynb).
- mqn_multiserver_ps() - function in jline.examples.java.basic.MixedModel
- Complex mixed network with five PS queues and different server counts.
- mqn_singleserver_fcfs() - function in jline.examples.java.basic.MixedExamples
- Mixed FCFS network with large closed population (mqn_singleserver_fcfs.ipynb).
- mqn_singleserver_fcfs() - function in jline.examples.java.basic.MixedModel
- Mixed network with large closed class population and APH arrivals.
- mqn_singleserver_ps() - function in jline.examples.java.basic.MixedExamples
- Mixed PS network with simplified routing (mqn_singleserver_ps.ipynb).
- mqn_singleserver_ps() - function in jline.examples.java.basic.MixedModel
- Mixed PS network with large closed population and simplified open routing.
- MQNResultsFormatter - class in jline.bench.mqn
- Formats MQN benchmark results in MATLAB-style output format
- MQNResultsFormatter.MQNBenchmarkResult - class in jline.bench.mqn.MQNResultsFormatter
- Benchmark result data structure
- MQNResultsFormatter.MQNResultsAccumulator - class in jline.bench.mqn.MQNResultsFormatter
- Accumulates benchmark results for batch formatting
- ms_additivesymmetricchisquared(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_additivesymmetricchisquaredKt
- Additive symmetric chi-squared distance between two probability distributions.
- Ms_additivesymmetricchisquaredKt - class in jline.api.measures
- ms_anderson_darling(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_anderson_darlingKt
- Anderson-Darling distance between two empirical distributions.
- Ms_anderson_darlingKt - class in jline.api.measures
- ms_avgl1linfty(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_avgl1linftyKt
- Average L1 L-infinity distance between two probability distributions.
- Ms_avgl1linftyKt - class in jline.api.measures
- ms_bhattacharyya(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_bhattacharyyaKt
- Bhattacharyya distance between two probability distributions.
- Ms_bhattacharyyaKt - class in jline.api.measures
- ms_canberra(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_canberraKt
- Canberra distance between two probability distributions.
- Ms_canberraKt - class in jline.api.measures
- ms_chebyshev(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_chebyshevKt
- Chebyshev distance between two probability distributions.
- Ms_chebyshevKt - class in jline.api.measures
- ms_cityblock(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_cityblockKt
- City block (Manhattan) distance between two probability distributions.
- Ms_cityblockKt - class in jline.api.measures
- ms_clark(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_clarkKt
- Clark distance between two probability distributions.
- Ms_clarkKt - class in jline.api.measures
- ms_condentropy(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_condentropyKt
- Compute conditional entropy z=H(x|y) of two discrete variables x and y.
- Ms_condentropyKt - class in jline.api.measures
- ms_cosine(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_cosineKt
- Cosine distance between two probability distributions.
- Ms_cosineKt - class in jline.api.measures
- ms_cramer_von_mises(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_cramer_von_misesKt
- Cramér-von Mises distance between two empirical distributions.
- Ms_cramer_von_misesKt - class in jline.api.measures
- ms_czekanowski(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_czekanowskiKt
- Czekanowski distance between two probability distributions.
- Ms_czekanowskiKt - class in jline.api.measures
- ms_dice(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_diceKt
- Dice distance between two probability distributions.
- Ms_diceKt - class in jline.api.measures
- ms_divergence(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_divergenceKt
- Divergence distance between two probability distributions.
- Ms_divergenceKt - class in jline.api.measures
- ms_entropy(jline.util.matrix.Matrix) - function in jline.api.measures.Ms_entropyKt
- Compute entropy z=H(x) of a discrete variable x.
- Ms_entropyKt - class in jline.api.measures
- ms_euclidean(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_euclideanKt
- Euclidean distance between two probability distributions.
- Ms_euclideanKt - class in jline.api.measures
- ms_fidelity(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_fidelityKt
- Fidelity distance between two probability distributions.
- Ms_fidelityKt - class in jline.api.measures
- ms_gower(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_gowerKt
- Gower distance between two probability distributions.
- Ms_gowerKt - class in jline.api.measures
- ms_harmonicmean(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_harmonicmeanKt
- Harmonic mean distance between two probability distributions.
- Ms_harmonicmeanKt - class in jline.api.measures
- ms_hellinger(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_hellingerKt
- Hellinger distance between two probability distributions.
- Ms_hellingerKt - class in jline.api.measures
- ms_intersection(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_intersectionKt
- Intersection distance between two probability distributions.
- Ms_intersectionKt - class in jline.api.measures
- ms_jaccard(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_jaccardKt
- Jaccard distance between two probability distributions.
- Ms_jaccardKt - class in jline.api.measures
- ms_jeffreys(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_jeffreysKt
- Jeffreys divergence between two probability distributions.
- Ms_jeffreysKt - class in jline.api.measures
- ms_jensendifference(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_jensendifferenceKt
- Jensen difference divergence between two probability distributions.
- Ms_jensendifferenceKt - class in jline.api.measures
- ms_jensenshannon(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_jensenshannonKt
- Jensen-Shannon divergence between two probability distributions.
- Ms_jensenshannonKt - class in jline.api.measures
- ms_jointentropy(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_jointentropyKt
- Compute joint entropy z=H(x,y) of two discrete variables x and y.
- Ms_jointentropyKt - class in jline.api.measures
- ms_kdivergence(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_kdivergenceKt
- K-divergence between two probability distributions.
- Ms_kdivergenceKt - class in jline.api.measures
- ms_kolmogorov_smirnov(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_kolmogorov_smirnovKt
- Kolmogorov-Smirnov distance between two empirical distributions.
- Ms_kolmogorov_smirnovKt - class in jline.api.measures
- ms_kuiper(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_kuiperKt
- Kuiper distance between two empirical distributions.
- Ms_kuiperKt - class in jline.api.measures
- ms_kulczynskid(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_kulczynskidKt
- Kulczynski d distance between two probability distributions.
- Ms_kulczynskidKt - class in jline.api.measures
- ms_kulczynskis(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_kulczynskisKt
- Kulczynski s distance between two probability distributions.
- Ms_kulczynskisKt - class in jline.api.measures
- ms_kullbackleibler(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_kullbackleiblerKt
- Kullback-Leibler divergence between two probability distributions.
- Ms_kullbackleiblerKt - class in jline.api.measures
- ms_kumarhassebrook(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_kumarhassebrookKt
- Kumar-Hassebrook distance between two probability distributions.
- Ms_kumarhassebrookKt - class in jline.api.measures
- ms_kumarjohnson(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_kumarjohnsonKt
- Kumar-Johnson distance between two probability distributions.
- Ms_kumarjohnsonKt - class in jline.api.measures
- ms_lorentzian(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_lorentzianKt
- Lorentzian distance between two probability distributions.
- Ms_lorentzianKt - class in jline.api.measures
- ms_matusita(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_matusitaKt
- Matusita distance between two probability distributions.
- Ms_matusitaKt - class in jline.api.measures
- ms_minkowski(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.api.measures.Ms_minkowskiKt
- Minkowski distance between two probability distributions.
- Ms_minkowskiKt - class in jline.api.measures
- ms_motyka(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_motykaKt
- Motyka distance between two probability distributions.
- Ms_motykaKt - class in jline.api.measures
- ms_mutinfo(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_mutinfoKt
- Compute mutual information I(x,y) of two discrete variables x and y.
- Ms_mutinfoKt - class in jline.api.measures
- ms_neymanchisquared(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_neymanchisquaredKt
- Neyman chi-squared distance between two probability distributions.
- Ms_neymanchisquaredKt - class in jline.api.measures
- Ms_nmi - class in jline.api.measures
- Ms_nmi algorithms
- ms_nmi(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_nmiKt
- Compute normalized mutual information I(x,y)/sqrt(H(x)*H(y)) of two discrete variables x and y.
- Ms_nmiKt - class in jline.api.measures
- Ms_nvi - class in jline.api.measures
- Ms_nvi algorithms
- ms_nvi(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_nviKt
- Compute normalized variation information z=(1-I(x,y)/H(x,y)) of two discrete variables x and y.
- Ms_nviKt - class in jline.api.measures
- ms_pearsonchisquared(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_pearsonchisquaredKt
- Pearson chi-squared distance between two probability distributions.
- Ms_pearsonchisquaredKt - class in jline.api.measures
- ms_probsymmchisquared(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_probsymmchisquaredKt
- Probabilistic symmetry chi-squared distance between two probability distributions.
- Ms_probsymmchisquaredKt - class in jline.api.measures
- ms_product(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_productKt
- Product distance between two probability distributions.
- Ms_productKt - class in jline.api.measures
- ms_relatentropy(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_relatentropyKt
- Compute relative entropy (a.k.a KL divergence) z=KL(p(x)||p(y)) of two discrete variables x and y.
- Ms_relatentropyKt - class in jline.api.measures
- ms_ruzicka(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_ruzickaKt
- Ruzicka distance between two probability distributions.
- Ms_ruzickaKt - class in jline.api.measures
- ms_soergel(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_soergelKt
- Soergel distance between two probability distributions.
- Ms_soergelKt - class in jline.api.measures
- ms_sorensen(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_sorensenKt
- Sorensen distance between two probability distributions.
- Ms_sorensenKt - class in jline.api.measures
- ms_squaredchisquared(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_squaredchisquaredKt
- Squared chi-squared distance between two probability distributions.
- Ms_squaredchisquaredKt - class in jline.api.measures
- ms_squaredchord(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_squaredchordKt
- Squared chord distance between two probability distributions.
- Ms_squaredchordKt - class in jline.api.measures
- ms_squaredeuclidean(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_squaredeuclideanKt
- Squared Euclidean distance between two probability distributions.
- Ms_squaredeuclideanKt - class in jline.api.measures
- ms_taneja(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_tanejaKt
- Taneja distance between two probability distributions.
- Ms_tanejaKt - class in jline.api.measures
- ms_tanimoto(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_tanimotoKt
- Tanimoto distance between two probability distributions.
- Ms_tanimotoKt - class in jline.api.measures
- ms_topsoe(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_topsoeKt
- Topsoe distance between two probability distributions.
- Ms_topsoeKt - class in jline.api.measures
- ms_wasserstein(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_wassersteinKt
- Wasserstein distance (Earth Mover's Distance) between two empirical distributions.
- Ms_wassersteinKt - class in jline.api.measures
- ms_wavehegdes(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.api.measures.Ms_wavehegdesKt
- Wave-Hedges distance between two probability distributions.
- Ms_wavehegdesKt - class in jline.api.measures
- MsAdditivesymmetricchisquaredAlgo - class in jline.api.measures
- Additivesymmetricchisquared metric algorithms
- MsAvgl1linftyAlgo - class in jline.api.measures
- Avgl1Linfty metric algorithms
- MsBhattacharyyaAlgo - class in jline.api.measures
- Bhattacharyya metric algorithms
- MsCanberraAlgo - class in jline.api.measures
- Canberra metric algorithms
- MsChebyshevAlgo - class in jline.api.measures
- Chebyshev metric algorithms
- MsCityblockAlgo - class in jline.api.measures
- Cityblock metric algorithms
- MsClarkAlgo - class in jline.api.measures
- Clark metric algorithms
- MsCosineAlgo - class in jline.api.measures
- Cosine metric algorithms
- MsCzekanowskiAlgo - class in jline.api.measures
- Czekanowski metric algorithms
- MsDiceAlgo - class in jline.api.measures
- Dice metric algorithms
- MsDivergenceAlgo - class in jline.api.measures
- Divergence metric algorithms
- MsEuclideanAlgo - class in jline.api.measures
- Euclidean distance metric algorithms
- MsFidelityAlgo - class in jline.api.measures
- Fidelity metric algorithms
- MsGowerAlgo - class in jline.api.measures
- Gower metric algorithms
- MsHarmonicmeanAlgo - class in jline.api.measures
- Harmonicmean metric algorithms
- MsHellingerAlgo - class in jline.api.measures
- Hellinger metric algorithms
- MsIntersectionAlgo - class in jline.api.measures
- Intersection metric algorithms
- MsJaccardAlgo - class in jline.api.measures
- Jaccard metric algorithms
- MsJeffreysAlgo - class in jline.api.measures
- Jeffreys metric algorithms
- MsJensendifferenceAlgo - class in jline.api.measures
- Jensendifference metric algorithms
- MsJensenshannonAlgo - class in jline.api.measures
- Jensenshannon metric algorithms
- MsKdivergenceAlgo - class in jline.api.measures
- Kdivergence metric algorithms
- MsKulczynskidAlgo - class in jline.api.measures
- Kulczynskid metric algorithms
- MsKulczynskisAlgo - class in jline.api.measures
- Kulczynskis metric algorithms
- MsKullbackleiblerAlgo - class in jline.api.measures
- Kullbackleibler metric algorithms
- MsKumarhassebrookAlgo - class in jline.api.measures
- Kumarhassebrook metric algorithms
- MsKumarjohnsonAlgo - class in jline.api.measures
- Kumarjohnson metric algorithms
- MsLorentzianAlgo - class in jline.api.measures
- Lorentzian metric algorithms
- MsMatusitaAlgo - class in jline.api.measures
- Matusita metric algorithms
- MsMinkowskiAlgo - class in jline.api.measures
- Minkowski metric algorithms
- MsMotykaAlgo - class in jline.api.measures
- Motyka metric algorithms
- MsNeymanchisquaredAlgo - class in jline.api.measures
- Neymanchisquared metric algorithms
- MsPearsonchisquaredAlgo - class in jline.api.measures
- Pearsonchisquared metric algorithms
- MsProductAlgo - class in jline.api.measures
- Product metric algorithms
- MsRuzickaAlgo - class in jline.api.measures
- Ruzicka metric algorithms
- MsSoergelAlgo - class in jline.api.measures
- Soergel metric algorithms
- MsSorensenAlgo - class in jline.api.measures
- Sorensen metric algorithms
- MsSquaredchisquaredAlgo - class in jline.api.measures
- Squaredchisquared metric algorithms
- MsSquaredchordAlgo - class in jline.api.measures
- Squaredchord metric algorithms
- MsSquaredeuclideanAlgo - class in jline.api.measures
- Squaredeuclidean metric algorithms
- MsTanejaAlgo - class in jline.api.measures
- Taneja metric algorithms
- MsTanimotoAlgo - class in jline.api.measures
- Tanimoto metric algorithms
- MsTopsoeAlgo - class in jline.api.measures
- Topsoe metric algorithms
- MsWavehegdesAlgo - class in jline.api.measures
- Wavehegdes metric algorithms
- MTrace - class in jline.lib.m3a
- Data structure for multiclass trace representation.
- mtrace_backward_moment(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer,java.lang.Integer) - function in jline.api.trace.Mtrace_backward_momentKt
- Computes backward moments of a multi-class trace.
- mtrace_backward_moment_conditional(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer,java.lang.Integer) - function in jline.api.trace.Mtrace_backward_momentKt
- Computes conditional backward moments given the forward recurrence time.
- Mtrace_backward_momentKt - class in jline.api.trace
- mtrace_bootstrap(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer,java.lang.Integer,java.lang.Long) - function in jline.api.trace.Mtrace_bootstrapKt
- Performs bootstrap resampling on a multi-class trace to estimate confidence intervals and assess variability of trace statistics.
- Mtrace_bootstrapKt - class in jline.api.trace
- mtrace_count(kotlin.DoubleArray,kotlin.IntArray,java.lang.Double,java.lang.Integer) - function in jline.api.trace.Mtrace_countKt
- Computes count statistics from a multi-class trace over specified time windows.
- mtrace_count_multiscale(kotlin.DoubleArray,kotlin.IntArray,kotlin.DoubleArray) - function in jline.api.trace.Mtrace_countKt
- Compute multi-scale count statistics
- Mtrace_countKt - class in jline.api.trace
- mtrace_cov(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.trace.Mtrace_covKt
- Computes the covariance matrix for multi-type traces.
- Mtrace_covKt - class in jline.api.trace
- mtrace_cross_moment(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer) - function in jline.api.mam.Mmap_mixture_fit_traceKt
- Computes cross-class moments of given order from trace.
- mtrace_cross_moment(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer) - function in jline.api.trace.Mtrace_cross_momentKt
- Computes the k-th order moment of the inter-arrival time between an event of class i and an event of class j, for all possible pairs of classes.
- Mtrace_cross_momentKt - class in jline.api.trace
- mtrace_forward_moment(kotlin.DoubleArray,kotlin.IntArray,kotlin.IntArray,java.lang.Integer) - function in jline.api.trace.Mtrace_forward_momentKt
- Computes the forward moments of a marked trace.
- Mtrace_forward_momentKt - class in jline.api.trace
- mtrace_iat2counts(kotlin.DoubleArray,kotlin.IntArray,java.lang.Double) - function in jline.api.mam.m3pp.M3pp2m_fitc_traceKt
- Converts inter-arrival times to counts at given resolution.
- mtrace_iat2counts(kotlin.DoubleArray,java.lang.Double) - function in jline.api.trace.Mtrace_countKt
- Convert inter-arrival times to count process using native implementation equivalent
- mtrace_iat2counts(kotlin.DoubleArray,kotlin.IntArray,java.lang.Double) - function in jline.api.trace.Mtrace_iat2countsKt
- Computes the per-class counting processes of T, i.e., the counts after "scale" units of time from an arrival.
- Mtrace_iat2countsKt - class in jline.api.trace
- mtrace_joint(kotlin.DoubleArray,kotlin.IntArray,kotlin.IntArray) - function in jline.api.trace.Mtrace_jointKt
- Given a multi-class trace, computes the empirical class-dependent joint moments that estimate E ( X^(a)_j )^i(1) (X^(a)_(j+l) )^i(2) for all classes a.
- Mtrace_jointKt - class in jline.api.trace
- mtrace_mean(kotlin.DoubleArray,java.lang.Integer,kotlin.IntArray) - function in jline.api.trace.Mtrace_meanKt
- Computes the mean of a trace, divided by types.
- mtrace_mean(java.util.List) - function in jline.lib.kpctoolbox.trace.TraceAnalysisKt
- Computes the mean of multiple traces (multi-trace mean).
- Mtrace_meanKt - class in jline.api.trace
- mtrace_merge(kotlin.DoubleArray,kotlin.DoubleArray) - function in jline.api.trace.Mtrace_mergeKt
- Merges two traces in a single marked (multiclass) trace
- Mtrace_mergeKt - class in jline.api.trace
- mtrace_moment(kotlin.DoubleArray,kotlin.IntArray,kotlin.IntArray,java.lang.Integer,java.lang.Integer) - function in jline.api.trace.Mtrace_momentKt
- Computes the empirical class-dependent moments of a multi-class trace.
- mtrace_moment_simple(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer) - function in jline.api.trace.Mtrace_moment_simpleKt
- Computes the k-th order moment of the inter-arrival time between an event of class i and an event of class j, for all possible pairs of classes.
- Mtrace_moment_simpleKt - class in jline.api.trace
- Mtrace_momentKt - class in jline.api.trace
- mtrace_pc(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.trace.Mtrace_pcKt
- Computes the probabilities of arrival for each class.
- Mtrace_pcKt - class in jline.api.trace
- mtrace_sigma(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.trace.Mtrace_sigmaKt
- Computes the empirical probability of observing a specific 2-element sequence of events, i.e.
- mtrace_sigma2(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.mam.Mmap_mixture_fit_traceKt
- Computes two-step class transition probabilities from trace.
- mtrace_sigma2(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.trace.Mtrace_sigma2Kt
- Computes the empirical probability of observing a specific 3-element sequence of events, i.e.
- Mtrace_sigma2Kt - class in jline.api.trace
- Mtrace_sigmaKt - class in jline.api.trace
- mtrace_split(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.trace.Mtrace_splitKt
- Given a multi-class trace with inter-arrivals T and labels L, creates the separate per-class traces.
- Mtrace_splitKt - class in jline.api.trace
- mtrace_summary(kotlin.DoubleArray,kotlin.IntArray) - function in jline.api.trace.Mtrace_summaryKt
- Computes comprehensive summary statistics for a multi-class trace.
- Mtrace_summaryKt - class in jline.api.trace
- MtraceBackwardMomentAlgo - class in jline.api.trace
- Mtrace Backward Moment algorithms
- MtraceBootstrapAlgo - class in jline.api.trace
- Mtrace Bootstrap algorithms
- MtraceCountAlgo - class in jline.api.trace
- Mtrace Count algorithms
- MtraceCovAlgo - class in jline.api.trace
- Mtrace Cov algorithms
- MtraceCrossMomentAlgo - class in jline.api.trace
- Mtrace Cross Moment algorithms
- MtraceForwardMomentAlgo - class in jline.api.trace
- Mtrace Forward Moment algorithms
- MtraceIat2countsAlgo - class in jline.api.trace
- Mtrace Iat2Counts algorithms
- MtraceJointAlgo - class in jline.api.trace
- Mtrace Joint algorithms
- MtraceMeanAlgo - class in jline.api.trace
- Mtrace Mean algorithms
- MtraceMergeAlgo - class in jline.api.trace
- Mtrace Merge algorithms
- MtraceMomentAlgo - class in jline.api.trace
- Mtrace Moment algorithms
- MtraceMomentSimpleAlgo - class in jline.api.trace
- Mtrace Moment Simple algorithms
- MtracePcAlgo - class in jline.api.trace
- Mtrace Pc algorithms
- MtraceSigma2Algo - class in jline.api.trace
- Mtrace Sigma2 algorithms
- MtraceSigmaAlgo - class in jline.api.trace
- Mtrace Sigma algorithms
- MtraceSplitAlgo - class in jline.api.trace
- Mtrace Split algorithms
- MtraceSummary - class in jline.api.trace
- Data class representing a summary of multi-trace statistics
- MtraceSummaryAlgo - class in jline.api.trace
- Mtrace Summary algorithms
- mu() - function in jline.lang.processes.Coxian
- Kotlin-style property alias for getMu()
- mu() - function in jline.lang.processes.Coxian
- Kotlin-style property alias for getMu()
- mu() - function in jline.lang.processes.Det
- Kotlin-style property alias for getMu()
- mu() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getMu()
- mu() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getMu()
- mulByMinusOne() - function in jline.util.matrix.Matrix
- Multiplies all elements in the matrix by -1 in-place.
- mult(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.DenseMatrix
- Performs matrix multiplication: output = A * B.
- mult(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs matrix multiplication: this * B
- mult(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs matrix multiplication: this * B
- mult(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- Performs matrix multiplication: output = A * B.
- multColumnView(jline.util.matrix.ColumnView) - function in jline.util.matrix.Matrix
- Efficiently multiplies this row vector with a column view.
- multEq(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Replaces this matrix with the result of this * B.
- multichoose(double,double) - function in jline.util.Maths
- multichoose(int,int) - function in jline.util.Maths
- Generates all combinations of n objects taken k at a time with repetition (multichoose).
- multiChooseCombinations(int,int) - function in jline.util.Maths
- Generate all combinations of distributing n items into k bins
- multiChooseCon(jline.util.matrix.Matrix,double) - function in jline.util.Maths
- multichooseList(int,int) - function in jline.util.Maths
- Generates all combinations of n objects taken k at a time with repetition (multichoose).
- multiclassClosed() - function in jline.examples.java.advanced.AgentModel
- Creates a multiclass closed network.
- multinomialln(jline.util.matrix.Matrix) - function in jline.util.Maths
- multiply(java.util.function.UnaryOperator) - function in jline.lib.lti.function_wrapper
- multMatrix(org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.BaseMatrix
- Performs matrix multiplication with sparse matrices.
- multMatrix(org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.DenseMatrix
- Performs matrix multiplication with sparse matrices.
- multMatrix(org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- Performs matrix multiplication with sparse matrices.
- multMatrixStatic(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.DenseMatrix
- multMatrixStatic(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- multRowView(jline.util.matrix.RowView) - function in jline.util.matrix.Matrix
- Efficiently multiplies a row view with this column vector.
- MVA - enum entry in jline.lang.constant.SolverType
- MVA - class in jline.solvers.mva
- MVA is an alias for SolverMVA (Mean Value Analysis solver).
- MVAOptions - class in jline.solvers.mva
- Configuration options for Mean Value Analysis (MVA) solver.
- MVAResult - class in jline.solvers.mva
- Result container for Mean Value Analysis (MVA) solver computations.
- MVARunner - class in jline.solvers.mva.handlers
- MVASolverHandler - class in jline.solvers.mva.handlers
- MVAVersionParameters - class in jline.api.mapqn
- Parameters for MVA version models
- mvph_corr(kotlin.DoubleArray,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.kpctoolbox.mvph.MVPHKt
- Computes the correlation of a bivariate PH distribution.
- mvph_cov(kotlin.DoubleArray,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.kpctoolbox.mvph.MVPHKt
- Computes the covariance of a bivariate PH distribution.
- mvph_joint(kotlin.DoubleArray,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer,java.lang.Integer) - function in jline.lib.kpctoolbox.mvph.MVPHKt
- Computes the joint moment EX^n1 * Y^n2 of a bivariate phase-type distribution.
- mvph_mean_x(kotlin.DoubleArray,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.kpctoolbox.mvph.MVPHKt
- Computes the mean of the first variable in a bivariate PH distribution.
- mvph_mean_y(kotlin.DoubleArray,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.lib.kpctoolbox.mvph.MVPHKt
- Computes the mean of the second variable in a bivariate PH distribution.
- MVPHKt - class in jline.lib.kpctoolbox.mvph