A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
E
- e(java.lang.Integer) - function in jline.lib.kpctoolbox.basic.BasicUtilsKt
- Creates a vector e(n) = 1, 1, ...
- EDD - enum entry in jline.lang.constant.SchedStrategy
Earliest Due Date - jobs with earliest deadline served first (non-preemptive)
- EDF - enum entry in jline.lang.constant.SchedStrategy
Earliest Deadline First - jobs with earliest deadline served first (preemptive)
- eig() - function in jline.util.matrix.Matrix
- Computes the eigenvalues of this square matrix, including complex eigenvalues.
- eigval() - function in jline.util.matrix.Matrix
- Computes the eigenvalues of this square matrix.
- eigvec() - function in jline.util.matrix.Matrix
- Computes the eigenvalues and eigenvectors of this square matrix.
- Element - class in jline.lang
- Superclass for model elements
- elementAdd(kotlin.Array,int) - function in jline.util.Maths
- Helper method that adds an integer to every element of an integer array.
- elementDiv(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs element-wise division of this matrix by another matrix.
- elementDivide(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs element-wise division with another matrix.
- ElementDocumentPair - class in jline.io
- elementIncrease(double) - function in jline.util.matrix.Matrix
- Increases each element of the matrix by a constant value.
- elementMax() - function in jline.util.matrix.BaseMatrix
- elementMax() - function in jline.util.matrix.DenseMatrix
- elementMax() - function in jline.util.matrix.Matrix
- Returns the maximum value among all elements in the matrix.
- elementMax() - function in jline.util.matrix.SparseMatrix
- elementMaxAbs() - function in jline.util.matrix.BaseMatrix
- elementMaxAbs() - function in jline.util.matrix.DenseMatrix
- elementMaxAbs() - function in jline.util.matrix.Matrix
- Returns the maximum absolute value among all elements in the matrix.
- elementMaxAbs() - function in jline.util.matrix.SparseMatrix
- elementMin() - function in jline.util.matrix.BaseMatrix
- elementMin() - function in jline.util.matrix.DenseMatrix
- elementMin() - function in jline.util.matrix.Matrix
- Returns the minimum value among all elements in the matrix.
- elementMin() - function in jline.util.matrix.SparseMatrix
- elementMinNonZero(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Returns the smallest non-zero positive element in the given matrix.
- elementMult(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.BaseMatrix
- elementMult(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.DenseMatrix
- elementMult() - function in jline.util.matrix.Matrix
- Computes the product of the elements of a row or column vector.
- elementMult(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs in-place element-wise multiplication with another matrix.
- elementMult(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs element-wise multiplication with another matrix, storing the result in the given output matrix.
- elementMult(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- elementMultStatic(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.DenseMatrix
- elementMultStatic(org.ejml.data.DMatrix,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- elementMultWithVector(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs element-wise multiplication between this matrix and a row vector.
- elementPow(double) - function in jline.util.matrix.Matrix
- Raises each non-zero element of the matrix to the specified power.
- elementPower(double) - function in jline.util.matrix.Matrix
- Raises each element of the matrix to the given power.
- elementSum() - function in jline.util.matrix.BaseMatrix
- elementSum() - function in jline.util.matrix.DenseMatrix
- elementSum() - function in jline.util.matrix.Matrix
- Computes the sum of all elements in the matrix.
- elementSum() - function in jline.util.matrix.SparseMatrix
- eliminateImmediate(jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.util.matrix.Matrix,jline.lang.NetworkStruct,jline.solvers.SolverOptions) - function in jline.solvers.fluid.handlers.ImmediateElimination
- Eliminate immediate transitions from ODE system
- embedded() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getEmbedded()
- embedded() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getEmbedded()
- embeddedProb() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getEmbeddedProb()
- embeddedProb() - function in jline.lang.processes.Markovian
- Kotlin-style property alias for getEmbeddedProb()
- embeddedSolve() - function in jline.lang.processes.MarkedMarkovProcess
- Solve for embedded probabilities for all events
- embeddedSolve(kotlin.Array) - function in jline.lang.processes.MarkedMarkovProcess
- Solve for embedded probabilities for specified event set
- EmpiricalCDF - class in jline.lang.processes
- Empirical CDF for a distribution
- empiricalRelativeEntropy(kotlin.DoubleArray,kotlin.DoubleArray) - function in jline.lib.butools.fitting.RelativeEntropyKt
- Returns the empirical relative entropy using trace data.
- empiricalSquaredDifference(kotlin.DoubleArray,kotlin.DoubleArray) - function in jline.lib.butools.fitting.SquaredDifferenceKt
- Returns the empirical squared difference using trace data.
- ENABLE - enum entry in jline.lang.constant.EventType
- Enabling - class in jline.lang.sections
- A section that models enabling conditions in a stochastic Petri net transition
- endpoint(java.lang.String) - function in jline.streaming.StreamingOptions
- Set the OTLP receiver endpoint.
- enforceConstraints(kotlin.DoubleArray) - function in jline.api.mam.Maph2m_fitc_theoreticalKt
- Enforce parameter constraints
- Ensemble - class in jline.lang
- A model defined by a collection of sub-models
- ensembleAvg() - function in jline.solvers.EnsembleSolver
- ensembleAvg() - function in jline.solvers.EnsembleSolver
- EnsembleSolver - class in jline.solvers
- ensureDirectoryExists(java.lang.String) - function in jline.util.MatFileUtils
- Ensures the directory exists for the given filename
- ensureWorkspaceDirectoryExists() - function in jline.util.MatFileUtils
- Ensures the appropriate workspace directory exists
- Entry - class in jline.lang.layered
- An Entry represents a service interface exposed by a Task in a layered queueing network.
- Env - class in jline.lang
- An environment model defined by a collection of network sub-models coupled with an environment transition rule that selects the active sub-model.
- ENV - enum entry in jline.lang.constant.SolverType
- ENV - class in jline.solvers.env
- ENV is an alias for SolverENV (Ensemble environment solver).
- EnvBreakdownExample - class in jline.examples.java.advanced
- Example demonstrating the node breakdown/repair API for random environments.
- Environment - class in jline.lang
- An environment model defined by a collection of network sub-models coupled with an environment transition rule that selects the active sub-model.
- Environment.ResetEnvRatesFunction - class in jline.lang.Environment
- Environment.ResetQueueLengthsFunction - class in jline.lang.Environment
- EnvOptions - class in jline.solvers.env
- eq(java.lang.Double) - function in jline.api.mapqn.Mapqn_lpmodel.LinearConstraintBuilder
- equals(Object) - function in jline.io.Ret.FJAuxClassKey
- equals(Object) - function in jline.io.Ret.pfqnGldIndex
- equals(Object) - function in jline.lang.nodes.Cache.PopularityKey
- equals(Object) - function in jline.lang.processes.MAP
- Checks if this MAP is equal to another object.
- equals(Object) - function in jline.lang.processes.MMPP2
- Checks if this MMPP2 is equal to another object.
- equals(Object) - function in jline.lang.state.EventCacheKey
- equals(java.lang.Object) - function in jline.lib.kpctoolbox.basic.SpectralDecomposition
- equals(java.lang.Object) - function in jline.lib.kpctoolbox.kpcfit.TraceData
- equals(java.lang.Object) - function in jline.lib.kpctoolbox.mc.CTMCSolveResult
- equals(java.lang.Object) - function in jline.lib.kpctoolbox.mc.ConnectedComponents
- equals(java.lang.Object) - function in jline.lib.kpctoolbox.trace.TraceSummary
- equals(java.lang.Object) - function in jline.lib.m3a.MTrace
- equals(java.lang.Object) - function in jline.lib.mom.solver.MomSolverResult
- equals(Object) - function in jline.util.matrix.BaseMatrix
- Indicates whether some other object is "equal to" this matrix.
- equals(Object) - function in jline.util.matrix.DenseMatrix
- Indicates whether some other object is "equal to" this dense matrix.
- equals(Object) - function in jline.util.matrix.Matrix
- Checks for matrix equality.
- equals(Object) - function in jline.util.matrix.SparseMatrix
- Indicates whether some other object is "equal to" this sparse matrix.
- erchmm_emfit(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer,java.lang.Double,java.lang.Boolean) - function in jline.lib.kpctoolbox.erchmm.ERCHMMKt
- Fits an Extended Renewal Continuous-time Hidden Markov Model to a trace using EM algorithm.
- erchmm_emfit_simple(kotlin.DoubleArray,kotlin.IntArray,java.lang.Integer,java.lang.Double) - function in jline.lib.kpctoolbox.erchmm.ERCHMMKt
- Simplified version of erchmm_emfit that returns only the MAP.
- ERCHMMFitResult - class in jline.lib.kpctoolbox.erchmm
- Result class for ER-CHMM EM fitting.
- ERCHMMKt - class in jline.lib.kpctoolbox.erchmm
- ERLANG - enum entry in jline.lang.constant.ProcessType
- Erlang - class in jline.lang.processes
- An Erlang-n distribution with n phases.
- erlang_example() - function in jline.lib.kpctoolbox.MAPCatalog
- Erlang Example Source: erlang_example.
- ErlangC(java.lang.Double,java.lang.Integer) - function in jline.api.qsys.Qsys_mmkKt
- Calculates the probability that an arriving customer is forced to join the queue (i.e., all servers are occupied) in an M/M/k system.
- errOnSum(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.bench.BenchmarkUtils
- Calculate mean error on sum for queue length metrics Returns mean absolute error relative to sum of each column Similar to MATLAB: mean(abs(exact-approx))/sum(exact)
- euler - class in jline.lib.lti
- evalACFT(kotlin.Array,double) - function in jline.lang.processes.MAP
- Evaluates the autocorrelation function at given lags and timescale.
- evalACFT(kotlin.Array,double) - function in jline.lang.processes.MMPP2
- evalACFT(kotlin.Array,double) - function in jline.lang.processes.MarkovModulated
- evalACFT(kotlin.Array,double) - function in jline.lang.processes.MarkovModulated
- evalCDF(double) - function in jline.lang.processes.Bernoulli
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(int) - function in jline.lang.processes.Bernoulli
- evalCDF(double) - function in jline.lang.processes.Binomial
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(int) - function in jline.lang.processes.Binomial
- evalCDF(double) - function in jline.lang.processes.Coxian
- Evaluates the cumulative distribution function at the given point.
- evalCDF(double) - function in jline.lang.processes.Coxian
- Evaluates the cumulative distribution function at the given point.
- evalCDF(double) - function in jline.lang.processes.Det
- Evaluates the cumulative distribution function at the given point.
- evalCDF(double) - function in jline.lang.processes.Disabled
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.DiscreteSampler
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.DiscreteUniform
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Distribution
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Distribution
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.EmpiricalCDF
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Erlang
- Evaluates the cumulative distribution function at the given point.
- evalCDF(double) - function in jline.lang.processes.Exp
- Evaluates the cumulative distribution function at the given point.
- evalCDF(double) - function in jline.lang.processes.GMM
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Gamma
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Geometric
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.HyperExp
- Evaluates the cumulative distribution function at the given point.
- evalCDF(double) - function in jline.lang.processes.Immediate
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Lognormal
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.MAP
- Evaluates the cumulative distribution function (CDF) at time t.
- evalCDF(double) - function in jline.lang.processes.MMPP2
- Evaluates the cumulative distribution function (CDF) at time t.
- evalCDF(double) - function in jline.lang.processes.MarkedMMPP
- Evaluates the cumulative distribution function (CDF) at time t.
- evalCDF(double) - function in jline.lang.processes.Markovian
- Evaluates the cumulative distribution function at the given point.
- evalCDF(double) - function in jline.lang.processes.Markovian
- Evaluates the cumulative distribution function at the given point.
- evalCDF(kotlin.Array) - function in jline.lang.processes.Markovian
- Evaluates the cumulative distribution function at multiple points.
- evalCDF(kotlin.Array) - function in jline.lang.processes.Markovian
- Evaluates the cumulative distribution function at multiple points.
- evalCDF(double) - function in jline.lang.processes.Normal
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.PH
- Evaluates the cumulative distribution function (CDF) at time t.
- evalCDF(double) - function in jline.lang.processes.Pareto
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Poisson
- Evaluates the cumulative distribution function (CDF) at value t.
- evalCDF(double) - function in jline.lang.processes.Prior
- Evaluates the mixture CDF at t.
- evalCDF(double) - function in jline.lang.processes.Replayer
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Replayer
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Uniform
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Weibull
- Evaluates the cumulative distribution function (CDF) at the given point.
- evalCDF(double) - function in jline.lang.processes.Zipf
- Evaluates the cumulative distribution function at t
- evalCDF(double) - function in jline.solvers.posterior.SolverPosterior.EmpiricalCDF
- Evaluates the CDF at point x.
- evalCDFMatrix() - function in jline.lang.processes.APH
- Evaluates the CDF at default time points and returns as a Matrix.
- evalCDFMatrix(kotlin.Array) - function in jline.lang.processes.APH
- Evaluates the CDF at specified time points and returns as a Matrix.
- evalLST(double) - function in jline.lang.processes.APH
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Bernoulli
- Evaluates the Laplace-Stieltjes Transform at s.
- evalLST(double) - function in jline.lang.processes.Binomial
- Evaluates the Laplace-Stieltjes Transform at s.
- evalLST(double) - function in jline.lang.processes.ContinuousDistribution
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Coxian
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Coxian
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Det
- Evaluates the Laplace-Stieltjes transform at the given point.
- evalLST(double) - function in jline.lang.processes.Disabled
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.DiscreteDistribution
- Evaluate the Laplace-Stieltjes Transform at s For discrete distributions, this is the probability generating function evaluated at e^(-s)
- evalLST(double) - function in jline.lang.processes.DiscreteDistribution
- Evaluate the Laplace-Stieltjes Transform at s For discrete distributions, this is the probability generating function evaluated at e^(-s)
- evalLST(double) - function in jline.lang.processes.DiscreteUniform
- Evaluates the Laplace-Stieltjes Transform at s.
- evalLST(double) - function in jline.lang.processes.Distribution
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.EmpiricalCDF
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Erlang
- Evaluates the Laplace-Stieltjes transform at the given point.
- evalLST(double) - function in jline.lang.processes.Exp
- Evaluates the Laplace-Stieltjes transform at the given point.
- evalLST(double) - function in jline.lang.processes.GMM
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Gamma
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Geometric
- Evaluates the Laplace-Stieltjes Transform at s.
- evalLST(double) - function in jline.lang.processes.HyperExp
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Immediate
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Lognormal
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.MAP
- Evaluates the Laplace-Stieltjes Transform (LST) at parameter s.
- evalLST(double) - function in jline.lang.processes.MMPP2
- Evaluates the Laplace-Stieltjes Transform (LST) at parameter s.
- evalLST(double) - function in jline.lang.processes.MarkedMMPP
- Evaluates the Laplace-Stieltjes Transform (LST) at parameter s.
- evalLST(double) - function in jline.lang.processes.Markovian
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Markovian
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Normal
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.PH
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Pareto
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Poisson
- Evaluates the Laplace-Stieltjes Transform at s.
- evalLST(double) - function in jline.lang.processes.Prior
- Evaluates the mixture Laplace-Stieltjes transform.
- evalLST(double) - function in jline.lang.processes.Replayer
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Replayer
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Uniform
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Weibull
- Evaluate the Laplace-Stieltjes Transform at s
- evalLST(double) - function in jline.lang.processes.Zipf
- Evaluates the Laplace-Stieltjes Transform at s.
- evalMeanT(double) - function in jline.lang.processes.MAP
- Evaluates the mean of the counting process at time t.
- evalMeanT(double) - function in jline.lang.processes.MMPP2
- Evaluates the mean count at time t.
- evalMeanT(double) - function in jline.lang.processes.Markovian
- Evaluates the mean count at time t.
- evalMeanT(double) - function in jline.lang.processes.Markovian
- Evaluates the mean count at time t.
- evalPDF(double) - function in jline.lang.processes.GMM
- evalPDF(double) - function in jline.lang.processes.Gamma
- Evaluates the probability density function (PDF) at the given point.
- evalPDF(double) - function in jline.lang.processes.Lognormal
- Evaluates the probability density function (PDF) at the given point.
- evalPDF(double) - function in jline.lang.processes.MAP
- Evaluates the probability density function (PDF) at time t.
- evalPDF(double) - function in jline.lang.processes.MMPP2
- Evaluates the probability density function (PDF) at time t.
- evalPDF(double) - function in jline.lang.processes.Normal
- evalPDF(double) - function in jline.lang.processes.Pareto
- Evaluates the probability density function (PDF) at the given point.
- evalPDF(int) - function in jline.lang.processes.Poisson
- evalPDF(double) - function in jline.lang.processes.Uniform
- Evaluates the probability density function (PDF) at the given point.
- evalPDF(double) - function in jline.lang.processes.Weibull
- Evaluates the probability density function (PDF) at the given point.
- evalPMF(int) - function in jline.lang.processes.Bernoulli
- evalPMF(int) - function in jline.lang.processes.Binomial
- evalPMF(double) - function in jline.lang.processes.DiscreteDistribution
- evalPMF(double) - function in jline.lang.processes.DiscreteDistribution
- evalPMF(kotlin.Array) - function in jline.lang.processes.DiscreteDistribution
- evalPMF(kotlin.Array) - function in jline.lang.processes.DiscreteDistribution
- evalPMF(java.util.List) - function in jline.lang.processes.DiscreteDistribution
- evalPMF(java.util.List) - function in jline.lang.processes.DiscreteDistribution
- evalPMF() - function in jline.lang.processes.DiscreteSampler
- evalPMF(java.util.List) - function in jline.lang.processes.DiscreteSampler
- evalPMF(double) - function in jline.lang.processes.Geometric
- evalPMF() - function in jline.lang.processes.Zipf
- evalPMF(java.util.List) - function in jline.lang.processes.Zipf
- Evaluates the probability mass function at t
- evalProbInterval(double,double) - function in jline.lang.processes.Distribution
- Evaluates the probability of the distribution falling within the given interval.
- evalProbInterval(double,double) - function in jline.lang.processes.Distribution
- Evaluates the probability of the distribution falling within the given interval.
- evalVarT(double) - function in jline.lang.processes.MAP
- Evaluates the variance of the counting process at time t.
- evalVarT(double) - function in jline.lang.processes.MMPP2
- Evaluates the variance at time t.
- evalVarT(double) - function in jline.lang.processes.Markovian
- Evaluates the variance count at time t.
- evalVarT(double) - function in jline.lang.processes.Markovian
- Evaluates the variance count at time t.
- Event - class in jline.lang
- Class abstracting an event within a Network model
- EventCache - class in jline.lang.state
- A class storing events
- EventCacheKey - class in jline.lang.state
- A data structure acting as a key to the EventCache
- EventType - class in jline.lang.constant
- Constants for specifying events
- example1_basicFailureRepair() - function in jline.examples.java.advanced.EnvBreakdownExample
- Example 1: Using addNodeFailureRepair convenience method with node object (recommended).
- example2_separateCalls() - function in jline.examples.java.advanced.EnvBreakdownExample
- Example 2: Using separate breakdown and repair calls with node object.
- example3_customResetPolicies() - function in jline.examples.java.advanced.EnvBreakdownExample
- Example 3: With custom reset policies using node object.
- example4_modifyResetPolicies() - function in jline.examples.java.advanced.EnvBreakdownExample
- Example 4: Modifying reset policies after creation using node object.
- example5_solveEnvironment() - function in jline.examples.java.advanced.EnvBreakdownExample
- Example 5: Solve the environment model and display results.
- EXHAUSTIVE - enum entry in jline.lang.constant.PollingType
- EXP - enum entry in jline.io.WfCommonsOptions.DistributionType
Exponential distribution (default)
- EXP - enum entry in jline.lang.constant.ProcessType
- Exp - class in jline.lang.processes
- An exponential distribution.
- exp() - function in jline.util.matrix.Matrix
- Applies the exponential function to each element of the matrix.
- expandMatrix(int,int,int) - function in jline.util.matrix.Matrix
- Expands the matrix dimensions to the specified size while preserving data.
- expandMatrixToSquare() - function in jline.util.matrix.Matrix
- Expands the matrix to be square, padding with zeros as needed.
- expectsReply() - function in jline.lang.JobClass
- Checks if this job class expects a reply signal after processing.
- expectsReply() - function in jline.lang.JobClass
- Checks if this job class expects a reply signal after processing.
- expm() - function in jline.util.matrix.Matrix
- Computes the matrix exponential.
- expm_higham() - function in jline.util.matrix.Matrix
- Computes the matrix exponential using Higham's scaling and squaring method.
- exponential() - function in jline.io.WfCommonsOptions
- Create options with exponential distribution.
- exportAnalysis(java.lang.String) - function in jline.api.wf.WorkflowManager
- Export workflow analysis to different formats.
- EXT - enum entry in jline.lang.constant.SchedStrategy
External routing - used for open classes at sources
- extendToMarkovian(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer,java.lang.Double) - function in jline.lib.butools.reptrans.ExtendToMarkovianKt
- Extends a non-Markovian initial vector to a Markovian one by appending an Erlang tail.
- ExtendToMarkovianKt - class in jline.lib.butools.reptrans
- extract(jline.util.matrix.Matrix,int,int,int,int) - function in jline.util.matrix.Matrix
- Extracts a rectangular submatrix from the given source matrix.
- extract(jline.util.matrix.Matrix,int,int,int,int,jline.util.matrix.Matrix,int,int) - function in jline.util.matrix.Matrix
- Extracts a rectangular submatrix from a source matrix and stores it in a destination matrix.
- extractCols(int,int) - function in jline.util.matrix.Matrix
- Extracts a range of columns from this matrix (instance method).
- extractColumn(jline.util.matrix.Matrix,int,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Extracts a single column from the given matrix.
- extractColumn(org.ejml.data.DMatrix,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractColumnInPlace(org.ejml.data.DMatrix,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractColumnInPlaceStatic(org.ejml.data.DMatrix,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractColumns(jline.util.matrix.Matrix,int,int) - function in jline.util.matrix.Matrix
- Extracts a range of columns from the matrix [col0:col1).
- extractColumns(jline.util.matrix.Matrix,int,int,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Extracts a range of columns from the matrix [col0:col1) into a destination matrix.
- extractColumnStatic(org.ejml.data.DMatrix,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractDiag(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Extracts the diagonal elements of a matrix and stores them in a destination matrix.
- extractDiag(org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractDiagStatic(org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractFJParams(jline.lang.NetworkStruct,jline.api.fj.FJInfo) - function in jline.api.fj.FJConvertKt
- Extract Fork-Join parameters from network structureExtracts arrival and service processes for each class from the network, converting LINE distributions to FJ_codes format.
- extractMatrix(org.ejml.data.DMatrix,int,int,int,int,org.ejml.data.DMatrix,int,int) - function in jline.util.matrix.BaseMatrix
- extractMatrix(org.ejml.data.DMatrix,int,int,int,int,org.ejml.data.DMatrix,int,int) - function in jline.util.matrix.DenseMatrix
- extractMatrix(org.ejml.data.DMatrix,int,int,int,int,org.ejml.data.DMatrix,int,int) - function in jline.util.matrix.SparseMatrix
- extractMatrixStatic(org.ejml.data.DMatrix,int,int,int,int,org.ejml.data.DMatrix,int,int) - function in jline.util.matrix.DenseMatrix
- extractMatrixStatic(org.ejml.data.DMatrix,int,int,int,int,org.ejml.data.DMatrix,int,int) - function in jline.util.matrix.SparseMatrix
- extractRows(jline.util.matrix.ComplexMatrix,int,int,jline.util.matrix.ComplexMatrix) - function in jline.util.matrix.ComplexMatrix
- Extracts a range of rows from a complex matrix.
- extractRows(int,int) - function in jline.util.matrix.Matrix
- Extracts rows from this matrix (instance method).
- extractRows(jline.util.matrix.Matrix,int,int) - function in jline.util.matrix.Matrix
- Extracts a range of rows from the matrix [row0:row1).
- extractRows(jline.util.matrix.Matrix,int,int,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Extracts a range of rows from the matrix [row0:row1) into a destination matrix.
- extractRows(org.ejml.data.DMatrix,int,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractRowsInPlace(org.ejml.data.DMatrix,int,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractRowsInPlaceStatic(org.ejml.data.DMatrix,int,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- extractRowsStatic(org.ejml.data.DMatrix,int,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- eye(java.lang.Integer) - function in jline.lib.kpctoolbox.basic.BasicUtilsKt
- Creates an identity matrix.
- eye(int) - function in jline.util.matrix.Matrix
- Creates an identity matrix of given size.