Class Det

  • All Implemented Interfaces:
    java.io.Serializable , jline.lang.Copyable

    
    public class Det
    extends Distribution implements Serializable
                        

    A Deterministic distribution taking a single constant value.

    • Nested Class Summary

      Nested Classes 
      Modifier and Type Class Description
    • Constructor Summary

      Constructors 
      Constructor Description
      Det(double t) Creates a deterministic distribution with the specified constant value.
    • Enum Constant Summary

      Enum Constants 
      Enum Constant Description
    • Method Summary

      Modifier and Type Method Description
      static Det fitMean(double mean) Creates a deterministic distribution with the specified mean value.
      double evalCDF(double t) Evaluates the cumulative distribution function at the given point.
      double evalLST(double s) Evaluates the Laplace-Stieltjes transform at the given point.
      double getMean() Gets the mean of this deterministic distribution.
      void setMean(double t) Sets the mean (constant value) of this deterministic distribution.
      double getMu() Gets the rate (inverse of the constant value).
      double getPhi() Gets the phase parameter.
      Map<Integer, Matrix> getProcess() Gets the matrix representation of this deterministic process.
      void setProcess(Map<Integer, Matrix> proc) Sets the matrix representation of this deterministic process.
      double getRate() Gets the rate of this deterministic distribution.
      double getSCV() Gets the squared coefficient of variation.
      double getSkewness() Gets the skewness of this deterministic distribution.
      double getVar() Gets the variance of this deterministic distribution.
      boolean isContinuous() Checks if this is a continuous distribution.
      boolean isDisabled() Checks if this is a disabled distribution.
      boolean isDiscrete() Checks if this is a discrete distribution.
      boolean isImmediate() Checks if this distribution has immediate (zero) service time.
      Array<double> sample(int n) Generates random samples from this distribution using default random generator.
      Array<double> sample(int n, Random random) Generates random samples from this distribution using the specified random generator.
      double mu() Kotlin-style property alias for getMu()
      double phi() Kotlin-style property alias for getPhi()
      Map<Integer, Matrix> process() Kotlin-style property alias for getProcess()
      double mean() Kotlin-style property alias for getMean()
      double rate() Kotlin-style property alias for getRate()
      double scv() Kotlin-style property alias for getSCV()
      double skewness() Kotlin-style property alias for getSkewness()
      double var() Kotlin-style property alias for getVar()
      • Methods inherited from class jline.lang.processes.Distribution

        evalProbInterval, getName, getNumParams, getParam, getSupport, isMarkovian, name, numParams, param, setNumParams, setParam, support
      • Methods inherited from class jline.lang.Copyable

        copy
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Constructor Detail

      • Det

        Det(double t)
        Creates a deterministic distribution with the specified constant value.
        Parameters:
        t - the constant value for this deterministic distribution
    • Method Detail

      • fitMean

         static Det fitMean(double mean)

        Creates a deterministic distribution with the specified mean value. This is equivalent to new Det(mean).

        Parameters:
        mean - the mean value for the deterministic distribution
        Returns:

        a new Det distribution with the specified mean

      • evalCDF

         double evalCDF(double t)

        Evaluates the cumulative distribution function at the given point. Returns 0 if t <value, 1 if t >= value.

        Parameters:
        t - the point at which to evaluate the CDF
        Returns:

        0 or 1 depending on whether t has reached the deterministic value

      • evalLST

         double evalLST(double s)

        Evaluates the Laplace-Stieltjes transform at the given point.

        Parameters:
        s - the transform variable
        Returns:

        e^(-s*t) where t is the deterministic value

      • getMean

         double getMean()

        Gets the mean of this deterministic distribution.

        Returns:

        the constant value of the distribution

      • setMean

         void setMean(double t)

        Sets the mean (constant value) of this deterministic distribution.

        Parameters:
        t - the new constant value
      • getMu

         double getMu()

        Gets the rate (inverse of the constant value).

        Returns:

        1/t where t is the deterministic value

      • getPhi

         double getPhi()

        Gets the phase parameter.

        Returns:

        always returns 1 for deterministic distribution

      • getProcess

         Map<Integer, Matrix> getProcess()

        Gets the matrix representation of this deterministic process.

        Returns:

        map containing the process matrices

      • setProcess

         void setProcess(Map<Integer, Matrix> proc)

        Sets the matrix representation of this deterministic process.

        Parameters:
        proc - the process matrices to set
      • getRate

         double getRate()

        Gets the rate of this deterministic distribution.

        Returns:

        1/t where t is the deterministic value

      • getSCV

         double getSCV()

        Gets the squared coefficient of variation. For deterministic distribution, SCV = 0 (no variance).

        Returns:

        always returns 0

      • getSkewness

         double getSkewness()

        Gets the skewness of this deterministic distribution.

        Returns:

        always returns 0 (no skewness)

      • getVar

         double getVar()

        Gets the variance of this deterministic distribution.

        Returns:

        always returns 0 (no variance)

      • isContinuous

         boolean isContinuous()

        Checks if this is a continuous distribution.

        Returns:

        true if this is a continuous distribution, false otherwise

      • isDisabled

         boolean isDisabled()

        Checks if this is a disabled distribution.

        Returns:

        true if this is a disabled distribution, false otherwise

      • isDiscrete

         boolean isDiscrete()

        Checks if this is a discrete distribution.

        Returns:

        true if this is a discrete distribution, false otherwise

      • isImmediate

         boolean isImmediate()

        Checks if this distribution has immediate (zero) service time.

        Returns:

        true if the distribution is immediate or has mean <Zero threshold

      • sample

         Array<double> sample(int n)

        Generates random samples from this distribution using default random generator.

        Parameters:
        n - the number of samples to generate
        Returns:

        array of random samples

      • sample

         Array<double> sample(int n, Random random)

        Generates random samples from this distribution using the specified random generator.

        Parameters:
        n - the number of samples to generate
        random - the random number generator to use
        Returns:

        array of random samples

      • mu

         double mu()

        Kotlin-style property alias for getMu()

      • phi

         double phi()

        Kotlin-style property alias for getPhi()

      • mean

         double mean()

        Kotlin-style property alias for getMean()

      • rate

         double rate()

        Kotlin-style property alias for getRate()

      • scv

         double scv()

        Kotlin-style property alias for getSCV()

      • skewness

         double skewness()

        Kotlin-style property alias for getSkewness()

      • var

         double var()

        Kotlin-style property alias for getVar()