Class PH
-
-
Method Summary
Modifier and Type Method Description doubleevalCDF(double t)Evaluates the cumulative distribution function (CDF) at time t. doubleevalLST(double s)Evaluate the Laplace-Stieltjes Transform at s MatrixgetInitProb()Gets the initial probability vector. doublegetMean()Gets the mean of this Markovian distribution. longgetNumberOfPhases()Gets the number of phases in this Markovian distribution. MatrixCellgetProcess()Gets the matrix representation of this Markovian process. doublegetRate()Gets the rate of this distribution (inverse of mean). doublegetSCV()Gets the squared coefficient of variation (SCV) of this distribution. doublegetSkewness()Gets the skewness of this distribution. MatrixgetSubgenerator()doublegetVar()Gets the variance of this distribution. Array<double>sample(int n)Generates random samples from this distribution using default random generator. Array<double>sample(int n, Random random)Generates random samples from this distribution using the specified random generator. doublemean()Kotlin-style property alias for getMean() doublerate()Kotlin-style property alias for getRate() doublescv()Kotlin-style property alias for getSCV() doubleskewness()Kotlin-style property alias for getSkewness() doublevar()Kotlin-style property alias for getVar() MatrixinitProb()Kotlin-style property alias for getInitProb() longnumberOfPhases()Kotlin-style property alias for getNumberOfPhases() longnumPhases()Kotlin-style property alias for getNumberOfPhases() MatrixCellprocess()Kotlin-style property alias for getProcess() Matrixsubgenerator()Kotlin-style property alias for getSubgenerator() -
Methods inherited from class jline.lang.processes.Markovian
D, acf, embedded, embeddedProb, evalCDF, evalMeanT, evalVarT, getACF, getEmbedded, getEmbeddedProb, getIDC, getIDI, getMoments, getMu, getPhi, getVariance, idc, idi, moments, mu, phi, setMean, setProcess, setRate, variance -
Methods inherited from class jline.lang.processes.Distribution
evalProbInterval, getName, getNumParams, getParam, getSupport, isContinuous, isDisabled, isDiscrete, isImmediate, isMarkovian, name, numParams, param, setNumParams, setParam, support -
Methods inherited from class jline.lang.Copyable
copy -
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
-
Method Detail
-
evalCDF
double evalCDF(double t)
Evaluates the cumulative distribution function (CDF) at time t. For a PH distribution, CDF(t) = 1 - alpha * exp(T*t) * e where alpha is the initial probability vector, T is the subgenerator, and e is a vector of ones.
- Parameters:
t- the time value- Returns:
the CDF value at time t
-
evalLST
double evalLST(double s)
Evaluate the Laplace-Stieltjes Transform at s
- Parameters:
s- the Laplace domain variable- Returns:
the LST value at s
-
getInitProb
Matrix getInitProb()
Gets the initial probability vector.
- Returns:
the initial probabilities
-
getMean
double getMean()
Gets the mean of this Markovian distribution.
- Returns:
the mean value, or NaN if the process contains NaN values
-
getNumberOfPhases
long getNumberOfPhases()
Gets the number of phases in this Markovian distribution.
- Returns:
the number of phases
-
getProcess
MatrixCell getProcess()
Gets the matrix representation of this Markovian process.
- Returns:
MatrixCell containing D0, D1, ... matrices
-
getRate
double getRate()
Gets the rate of this distribution (inverse of mean).
- Returns:
the rate value (1/mean)
-
getSCV
double getSCV()
Gets the squared coefficient of variation (SCV) of this distribution. SCV = Var(X) / E[X]^2.
- Returns:
the squared coefficient of variation
-
getSkewness
double getSkewness()
Gets the skewness of this distribution. Skewness measures the asymmetry of the probability distribution.
- Returns:
the skewness value
-
getSubgenerator
Matrix getSubgenerator()
-
getVar
double getVar()
Gets the variance of this distribution. Computed as SCV * mean^2.
- Returns:
the variance
-
sample
Array<double> sample(int n)
Generates random samples from this distribution using default random generator.
- Parameters:
n- the number of samples to generate- Returns:
array of random samples
-
sample
Array<double> sample(int n, Random random)
Generates random samples from this distribution using the specified random generator.
- Parameters:
n- the number of samples to generaterandom- the random number generator to use- Returns:
array of random samples
-
mean
double mean()
Kotlin-style property alias for getMean()
-
rate
double rate()
Kotlin-style property alias for getRate()
-
scv
double scv()
Kotlin-style property alias for getSCV()
-
skewness
double skewness()
Kotlin-style property alias for getSkewness()
-
var
double var()
Kotlin-style property alias for getVar()
-
numberOfPhases
long numberOfPhases()
Kotlin-style property alias for getNumberOfPhases()
-
numPhases
long numPhases()
Kotlin-style property alias for getNumberOfPhases()
-
process
MatrixCell process()
Kotlin-style property alias for getProcess()
-
subgenerator
Matrix subgenerator()
Kotlin-style property alias for getSubgenerator()
-
-
-
-