Class Immediate

  • All Implemented Interfaces:
    java.io.Serializable , jline.lang.Copyable

    
    public class Immediate
    extends Distribution implements Serializable
                        

    An Immediate distribution that always samples 0.

    • Nested Class Summary

      Nested Classes 
      Modifier and Type Class Description
    • Constructor Summary

      Constructors 
      Constructor Description
      Immediate()
    • Enum Constant Summary

      Enum Constants 
      Enum Constant Description
    • Method Summary

      Modifier and Type Method Description
      static Immediate getInstance()
      double evalCDF(double t) Evaluates the cumulative distribution function (CDF) at the given point.
      double evalLST(double s) Evaluate the Laplace-Stieltjes Transform at s
      double getMean() Gets the mean (expected value) of this distribution.
      double getMu()
      Map<Integer, Matrix> getPH()
      double getPhi()
      double getRate() Gets the rate of this distribution (inverse of mean).
      double getSCV() Gets the squared coefficient of variation (SCV) of this distribution.
      double getSkewness() Gets the skewness of this distribution.
      double getVar() Gets the variance of this distribution.
      boolean isDisabled() Checks if this is a disabled distribution.
      boolean isImmediate() Checks if this distribution has immediate (zero) service time.
      Array<double> sample(int n) Gets n samples from the distribution
      Array<double> sample(int n, Random random) Generates random samples from this distribution using the specified random generator.
      • Methods inherited from class jline.lang.processes.Distribution

        evalProbInterval, getName, getNumParams, getParam, getSupport, isContinuous, isDiscrete, isMarkovian, mean, name, numParams, param, rate, scv, setNumParams, setParam, skewness, support, var
      • Methods inherited from class jline.lang.Copyable

        copy
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Constructor Detail

      • Immediate

        Immediate()
    • Method Detail

      • evalCDF

         double evalCDF(double t)

        Evaluates the cumulative distribution function (CDF) at the given point.

        Parameters:
        t - the point at which to evaluate the CDF
        Returns:

        the CDF value at point t

      • evalLST

         double evalLST(double s)

        Evaluate the Laplace-Stieltjes Transform at s

        Parameters:
        s - the Laplace domain variable
        Returns:

        the LST value at s

      • getMean

         double getMean()

        Gets the mean (expected value) of this distribution.

        Returns:

        the mean value

      • getRate

         double getRate()

        Gets the rate of this distribution (inverse of mean).

        Returns:

        the rate value (1/mean)

      • getSCV

         double getSCV()

        Gets the squared coefficient of variation (SCV) of this distribution. SCV = Var(X) / E[X]^2.

        Returns:

        the squared coefficient of variation

      • getSkewness

         double getSkewness()

        Gets the skewness of this distribution. Skewness measures the asymmetry of the probability distribution.

        Returns:

        the skewness value

      • getVar

         double getVar()

        Gets the variance of this distribution. Computed as SCV * mean^2.

        Returns:

        the variance

      • isDisabled

         boolean isDisabled()

        Checks if this is a disabled distribution.

        Returns:

        true if this is a disabled distribution, false otherwise

      • isImmediate

         boolean isImmediate()

        Checks if this distribution has immediate (zero) service time.

        Returns:

        true if the distribution is immediate or has mean <Zero threshold

      • sample

         Array<double> sample(int n)

        Gets n samples from the distribution

        Parameters:
        n - - the number of samples
        Returns:

        - n samples from the distribution

      • sample

         Array<double> sample(int n, Random random)

        Generates random samples from this distribution using the specified random generator.

        Parameters:
        n - the number of samples to generate
        random - the random number generator to use
        Returns:

        array of random samples