Package jline.api.mam
Class Maph2m_fitc_theoreticalKt
-
- All Implemented Interfaces:
public final class Maph2m_fitc_theoreticalKt
-
-
Method Summary
Modifier and Type Method Description final static MatrixCell
maph2m_fitc_theoretical(MatrixCell mmap, String method)
Fits the theoretical characteristics of a MMAP(n,m) with a M3PP(2,m). final static MatrixCell
maph2m_fitc_exact(Double a, Double bt1, Double bt2, Double binf, Double t1, Double t2, Double tinf, DoubleArray ai, DoubleArray dvt3, Double t3)
Exact fitting method using all available characteristics final static Pair<DoubleArray, Double>
optimizeWithConstraints(DoubleArray initialParams, Function1<DoubleArray, Double> objectiveFunction, Integer maxFunEvals, Double tolerance)
Enhanced optimization with constraints for exact fitting final static Unit
enforceConstraints(DoubleArray params)
Enforce parameter constraints final static Double
mmap_count_mean_class(MatrixCell mmap, Integer classIndex, Double t)
Helper functions for MMAP analysis - these would be implemented with full MMAP theory final static Double
mmap_count_var_class(MatrixCell mmap, Integer classIndex, Double t)
final static Double
mmap_count_var_others(MatrixCell mmap, Integer excludeClassIndex, Double t)
final static Double
computeScalarCountMean(MatrixCell mmap, Double t)
Compute scalar count mean from MMAP using proper theoretical analysis final static Double
computeScalarCountVar(MatrixCell mmap, Double t)
Compute scalar count variance from MMAP using proper theoretical analysis -
-
Method Detail
-
maph2m_fitc_theoretical
final static MatrixCell maph2m_fitc_theoretical(MatrixCell mmap, String method)
Fits the theoretical characteristics of a MMAP(n,m) with a M3PP(2,m).
- Parameters:
mmap
- The MMAP(n,m) to fit with a M3PP(2,m)method
- Either "exact" or "approx" (default: "exact")- Returns:
Fitted M3PP(2,m) model
-
maph2m_fitc_exact
final static MatrixCell maph2m_fitc_exact(Double a, Double bt1, Double bt2, Double binf, Double t1, Double t2, Double tinf, DoubleArray ai, DoubleArray dvt3, Double t3)
Exact fitting method using all available characteristics
-
optimizeWithConstraints
final static Pair<DoubleArray, Double> optimizeWithConstraints(DoubleArray initialParams, Function1<DoubleArray, Double> objectiveFunction, Integer maxFunEvals, Double tolerance)
Enhanced optimization with constraints for exact fitting
-
enforceConstraints
final static Unit enforceConstraints(DoubleArray params)
Enforce parameter constraints
-
mmap_count_mean_class
final static Double mmap_count_mean_class(MatrixCell mmap, Integer classIndex, Double t)
Helper functions for MMAP analysis - these would be implemented with full MMAP theory
-
mmap_count_var_class
final static Double mmap_count_var_class(MatrixCell mmap, Integer classIndex, Double t)
-
mmap_count_var_others
final static Double mmap_count_var_others(MatrixCell mmap, Integer excludeClassIndex, Double t)
-
computeScalarCountMean
final static Double computeScalarCountMean(MatrixCell mmap, Double t)
Compute scalar count mean from MMAP using proper theoretical analysis
-
computeScalarCountVar
final static Double computeScalarCountVar(MatrixCell mmap, Double t)
Compute scalar count variance from MMAP using proper theoretical analysis
-
-
-
-