A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
D
- D(int) - function in jline.lang.processes.MAP
- Gets the i-th matrix of the Markovian arrival process representation.
- D(int) - function in jline.lang.processes.MMPP2
- Gets the i-th matrix of the Markovian arrival process representation.
- D(int) - function in jline.lang.processes.Marked
- Gets the i-th matrix of the Markovian arrival process representation.
- D(int) - function in jline.lang.processes.Marked
- Gets the i-th matrix of the Markovian arrival process representation.
- D(int,int) - function in jline.lang.processes.Marked
- D(int,int) - function in jline.lang.processes.Marked
- D(int) - function in jline.lang.processes.Markovian
- Gets the i-th matrix of the Markovian arrival process representation.
- D(int) - function in jline.lang.processes.Markovian
- Gets the i-th matrix of the Markovian arrival process representation.
- DEBUG - enum entry in jline.VerboseLevel
Verbose debugging output with detailed trace information
- decorate(jline.util.matrix.Matrix,jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- deepcopy(java.util.ArrayList) - function in jline.lib.lti.cme
- deepCopy() - function in jline.solvers.LayeredSolverResult
- Creates a deep copy of this layered solver result.
- deepCopy() - function in jline.solvers.SolverResult
- Creates a deep copy of this SolverResult instance.
- deepCopy() - function in jline.solvers.SolverResult
- Creates a deep copy of this SolverResult instance.
- deepCopyNetwork(jline.lang.Network) - function in jline.solvers.posterior.SolverPosterior
- Deep copies a Network using serialization.
- defaultOptions() - function in jline.solvers.EnsembleSolver
- defaultOptions() - function in jline.solvers.Solver
- Returns a new SolverOptions instance with default settings.
- defaultOptions() - function in jline.solvers.Solver
- Returns a new SolverOptions instance with default settings.
- defaultOptions() - function in jline.solvers.ctmc.SolverCTMC
- defaultOptions() - function in jline.solvers.ctmc.SolverCTMC
- defaultOptions() - function in jline.solvers.des.SolverDES
- Returns the default solver options for the DES solver.
- defaultOptions() - function in jline.solvers.des.SolverDES
- Returns the default solver options for the DES solver.
- defaultOptions() - function in jline.solvers.env.SolverENV
- defaultOptions() - function in jline.solvers.env.SolverENV
- defaultOptions() - function in jline.solvers.fluid.SolverFluid
- Returns the default solver options for the Fluid solver.
- defaultOptions() - function in jline.solvers.fluid.SolverFluid
- Returns the default solver options for the Fluid solver.
- defaultOptions() - function in jline.solvers.jmt.SolverJMT
- defaultOptions() - function in jline.solvers.jmt.SolverJMT
- defaultOptions() - function in jline.solvers.ln.SolverLN
- defaultOptions() - function in jline.solvers.ln.SolverLN
- defaultOptions() - function in jline.solvers.lqns.SolverLQNS
- Returns the default solver options for the LQNS solver.
- defaultOptions() - function in jline.solvers.lqns.SolverLQNS
- Returns the default solver options for the LQNS solver.
- defaultOptions() - function in jline.solvers.mam.SolverMAM
- defaultOptions() - function in jline.solvers.mam.SolverMAM
- defaultOptions() - function in jline.solvers.mva.SolverMVA
- Returns the default solver options for the MVA solver.
- defaultOptions() - function in jline.solvers.mva.SolverMVA
- Returns the default solver options for the MVA solver.
- defaultOptions() - function in jline.solvers.nc.SolverNC
- defaultOptions() - function in jline.solvers.nc.SolverNC
- defaultOptions() - function in jline.solvers.posterior.SolverPosterior
- Returns default solver options.
- defaultOptions() - function in jline.solvers.qns.SolverQNS
- Get the default options for the QNS solver
- defaultOptions() - function in jline.solvers.qns.SolverQNS
- Get the default options for the QNS solver
- defaultOptions() - function in jline.solvers.ssa.SolverSSA
- Returns the default solver options for the SSA solver.
- defaultOptions() - function in jline.solvers.ssa.SolverSSA
- Returns the default solver options for the SSA solver.
- Delay - enum entry in jline.lang.constant.NodeType
Delay station - infinite servers with no queueing
- Delay - class in jline.lang.nodes
- An infinite server station, i.e.
- DenseMatrix - class in jline.util.matrix
- Base class for dense matrix implementations, containing the core data structure and methods that directly manipulate the underlying dense matrix representation.
- DEP - enum entry in jline.lang.constant.EventType
- DES - enum entry in jline.lang.constant.SolverType
- DES - class in jline.solvers.des
- DES is an alias for SolverDES (Discrete Event Simulation solver).
- DESOptions - class in jline.solvers.des
- Configuration options for Discrete Event Simulation (DES) solver.
- DESResult - class in jline.solvers.des
- DET - enum entry in jline.io.WfCommonsOptions.DistributionType
Deterministic (fixed) service time
- DET - enum entry in jline.lang.constant.ProcessType
- Det - class in jline.lang.processes
- A Deterministic distribution taking a single constant value.
- det() - function in jline.util.matrix.ComplexMatrix
- Computes the determinant of this complex matrix using LU decomposition.
- det() - function in jline.util.matrix.Matrix
- Computes the determinant of the matrix.
- det_acf(jline.util.matrix.MatrixCell,kotlin.IntArray) - function in jline.lib.kpctoolbox.smp.DETKt
- Computes the autocorrelation function for a deterministic process.
- det_embedded(jline.util.matrix.MatrixCell) - function in jline.lib.kpctoolbox.smp.DETKt
- Computes the embedded DTMC of a deterministic MAP.
- det_moment(jline.util.matrix.MatrixCell,kotlin.IntArray) - function in jline.lib.kpctoolbox.smp.DETKt
- Computes the k-th moment of a deterministic process.
- det_sample(jline.util.matrix.MatrixCell,java.lang.Integer,java.lang.Integer) - function in jline.lib.kpctoolbox.smp.DETKt
- Generates samples from a deterministic MAP.
- det_scv(jline.util.matrix.MatrixCell) - function in jline.lib.kpctoolbox.smp.DETKt
- Computes the squared coefficient of variation for a deterministic process.
- det_sum(jline.util.matrix.MatrixCell,jline.util.matrix.MatrixCell) - function in jline.lib.kpctoolbox.smp.DETKt
- Computes the sum of two deterministic processes.
- detectBranches(jline.util.matrix.Matrix,java.util.List,java.util.List) - function in jline.api.wf.Wf_branch_detector
- Detect branch patterns in a workflow network.
- detectLoops(jline.util.matrix.Matrix,java.util.List,java.util.List,java.util.List) - function in jline.api.wf.Wf_loop_detector
- Detect loop patterns in a workflow network.
- detectParallel(jline.util.matrix.Matrix,java.util.List,java.util.List,java.util.List) - function in jline.api.wf.Wf_parallel_detector
- Detect parallel patterns in a workflow network.
- detectPrior() - function in jline.solvers.posterior.SolverPosterior
- Detects Prior distributions in the model.
- detectSequences(jline.util.matrix.Matrix,java.util.List) - function in jline.api.wf.Wf_sequence_detector
- Detect sequence patterns in a workflow network.
- detectStiffnessUsingOstrowski(jline.lang.NetworkStruct,jline.util.matrix.Matrix) - function in jline.solvers.fluid.analyzers.ClosingAndStateDepMethodsAnalyzer
- determinant() - function in jline.util.matrix.BaseMatrix
- determinant() - function in jline.util.matrix.DenseMatrix
- determinant() - function in jline.util.matrix.SparseMatrix
- determinantStatic(org.ejml.data.DMatrix) - function in jline.util.matrix.DenseMatrix
- determinantStatic(org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- deterministic() - function in jline.io.WfCommonsOptions
- Create options with deterministic service times.
- DETKt - class in jline.lib.kpctoolbox.smp
- diag(kotlin.Array) - function in jline.util.matrix.Matrix
- Creates a square diagonal matrix from the given values.
- diagMatrix(kotlin.Array) - function in jline.util.matrix.Matrix
- Creates a square diagonal matrix from a given array of values.
- diagMatrix(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Creates a square diagonal matrix from the elements of a column or row vector matrix.
- diagMatrix(jline.util.matrix.Matrix,kotlin.Array,int,int) - function in jline.util.matrix.Matrix
- Creates or fills a square diagonal matrix with the specified values.
- diagStatic(kotlin.Array) - function in jline.util.matrix.SparseMatrix
- diagWithMatrixStatic(org.ejml.data.DMatrixSparseCSC,kotlin.Array,int,int) - function in jline.util.matrix.SparseMatrix
- diagWithRetStatic(org.ejml.data.DMatrixSparseCSC,kotlin.Array,int,int) - function in jline.util.matrix.SparseMatrix
- DirectedGraph - class in jline.util.graph
- A directed graph data structure with weighted edges represented as an adjacency matrix.
- DirectedGraph.SCCAuxResult - class in jline.util.graph.DirectedGraph
- DirectedGraph.SCCResult - class in jline.util.graph.DirectedGraph
- DISABLED - enum entry in jline.lang.constant.JobClassType
Disabled class - inactive job class not processed by the system
- DISABLED - enum entry in jline.lang.constant.ProcessType
- DISABLED - enum entry in jline.lang.constant.RoutingStrategy
Disabled routing - no routing allowed (jobs are dropped)
- Disabled - class in jline.lang.processes
- A special distribution to denote disabled service or arrival.
- DisabledClass - class in jline.lang
- Class of jobs that perpetually loop at a given station
- DiscreteDistribution - class in jline.lang.processes
- An abstract class for discrete distributions.
- DISCRETESAMPLER - enum entry in jline.lang.constant.ProcessType
- DiscreteSampler - class in jline.lang.processes
- A class for discrete distributions specified from the probability mass function
- DiscreteUniform - class in jline.lang.processes
- A discrete distribution that samples uniformly among a set of elements.
- Dispatcher - class in jline.lang.sections
- Output section that routes jobs to nodes
- Distribution - class in jline.lang.processes
- An abstract class of a general distribution
- div(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs element-wise division between this matrix and the provided matrix.
- divEq(jline.util.matrix.Matrix) - function in jline.util.matrix.Matrix
- Performs in-place element-wise division between this matrix and the provided matrix.
- divide(double,jline.util.matrix.Matrix,boolean) - function in jline.util.matrix.Matrix
- Divides this matrix by a scalar and stores the result in the output matrix.
- divideEq(double) - function in jline.util.matrix.Matrix
- Performs in-place division of this matrix by a scalar.
- divideInPlace(double) - function in jline.util.matrix.BaseMatrix
- divideInPlace(double) - function in jline.util.matrix.DenseMatrix
- divideInPlace(double) - function in jline.util.matrix.SparseMatrix
- divideInPlaceStatic(org.ejml.data.DMatrix,double) - function in jline.util.matrix.SparseMatrix
- divideMatrix(double,org.ejml.data.DMatrix) - function in jline.util.matrix.BaseMatrix
- divideMatrix(double,org.ejml.data.DMatrix) - function in jline.util.matrix.DenseMatrix
- divideMatrix(double,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- divideMatrixStatic(org.ejml.data.DMatrix,double,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- divideRows(kotlin.Array,int) - function in jline.util.matrix.Matrix
- Divides each row of this matrix by the corresponding diagonal element (with an offset).
- divideRowsByArray(kotlin.Array,int) - function in jline.util.matrix.BaseMatrix
- divideRowsByArray(kotlin.Array,int) - function in jline.util.matrix.DenseMatrix
- divideRowsByArray(kotlin.Array,int) - function in jline.util.matrix.SparseMatrix
- divideRowsByArrayStatic(kotlin.Array,int,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- divideScalarByMatrix(double,org.ejml.data.DMatrix) - function in jline.util.matrix.BaseMatrix
- divideScalarByMatrix(double,org.ejml.data.DMatrix) - function in jline.util.matrix.DenseMatrix
- divideScalarByMatrix(double,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- divideScalarByMatrixStatic(double,org.ejml.data.DMatrix,org.ejml.data.DMatrix) - function in jline.util.matrix.SparseMatrix
- dmap2FromMoments(kotlin.DoubleArray,java.lang.Double) - function in jline.lib.butools.dmap.DMAP2FromMomentsKt
- Returns a discrete MAP(2) which has the same 3 marginal moments and lag-1 autocorrelation as given.
- DMAP2FromMomentsKt - class in jline.lib.butools.dmap
- dmapFromDRAP(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.lib.butools.dmap.DMAPFromDRAPKt
- Obtains a Markovian representation of a discrete rational arrival process of the same size, if possible.
- DMAPFromDRAPKt - class in jline.lib.butools.dmap
- dmmapFromDMRAP(jline.util.matrix.MatrixCell,java.lang.Double) - function in jline.lib.butools.dmap.DMMAPFromDMRAPKt
- Obtains a Markovian representation of a discrete rational arrival process of the same size, if possible.
- dmmapFromDMRAP(kotlin.Array,java.lang.Double) - function in jline.lib.butools.dmap.DMMAPFromDMRAPKt
- Overload for Array<Matrix>.
- DMMAPFromDMRAPKt - class in jline.lib.butools.dmap
- dmrapFromMoments(kotlin.DoubleArray,jline.util.matrix.MatrixCell) - function in jline.lib.butools.dmap.DMRAPFromMomentsKt
- Creates a discrete marked rational arrival process that has the same marginal and lag-1 joint moments as given.
- dmrapFromMoments(kotlin.DoubleArray,kotlin.Array) - function in jline.lib.butools.dmap.DMRAPFromMomentsKt
- Overload for Array<Matrix>.
- DMRAPFromMomentsKt - class in jline.lib.butools.dmap
- DocumentSectionPair - class in jline.io
- dotProduct(jline.util.matrix.Matrix) - function in jline.util.matrix.RowView
- Computes the dot product of this row with a column vector.
- doubleArrayToString(kotlin.Array) - function in jline.util.Utils
- Convert double array to string representation
- dph2From3Moments(kotlin.DoubleArray) - function in jline.lib.butools.dph.DPH2From3MomentsKt
- Returns an order-2 discrete phase-type distribution which has the same 3 moments as given.
- DPH2From3MomentsKt - class in jline.lib.butools.dph
- DPH2Representation - class in jline.lib.butools.dph
- Result class for CanonicalFromDPH2 containing both beta and B.
- dph3From5Moments(kotlin.DoubleArray,java.lang.Double) - function in jline.lib.butools.dph.DPH3From5MomentsKt
- Returns an order-3 discrete phase-type distribution which has the same 5 moments as given.
- DPH3From5MomentsKt - class in jline.lib.butools.dph
- DPH3Representation - class in jline.lib.butools.dph
- Result class for CanonicalFromDPH3 containing both beta and B.
- dphFromMG(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double) - function in jline.lib.butools.dph.DPHFromMGKt
- Obtains a Markovian representation of a matrix-geometric distribution of the same size, if possible.
- dphFromMG(kotlin.DoubleArray,jline.util.matrix.Matrix,java.lang.Double) - function in jline.lib.butools.dph.DPHFromMGKt
- Overload for DoubleArray alpha.
- DPHFromMGKt - class in jline.lib.butools.dph
- DPS - enum entry in jline.lang.constant.SchedStrategy
Discriminatory Processor Sharing - jobs receive weighted shares based on class
- DPSPRIO - enum entry in jline.lang.constant.SchedStrategy
Discriminatory PS with Priorities - DPS within priority levels
- drapFromMoments(kotlin.DoubleArray,jline.util.matrix.Matrix) - function in jline.lib.butools.dmap.DRAPFromMomentsKt
- Creates a discrete rational arrival process that has the same marginal and lag-1 joint moments as given.
- DRAPFromMomentsKt - class in jline.lib.butools.dmap
- Drop - enum entry in jline.lang.constant.DropStrategy
- DropRate - enum entry in jline.lang.constant.MetricType
- DropStrategy - class in jline.lang.constant
- Constants for specifying drop strategies at stations.
- drpSolve(jline.util.matrix.Matrix) - function in jline.lib.butools.mc.CRPSolveKt
- Computes the stationary solution of a discrete time rational process (DRP).
- dtmc_isfeasible(jline.util.matrix.Matrix) - function in jline.api.mc.Dtmc_isfeasibleKt
- Check if a matrix represents a feasible DTMC transition matrix
- dtmc_isfeasible(jline.util.matrix.Matrix) - function in jline.lib.kpctoolbox.mc.DTMCKt
- Checks feasibility of a stochastic matrix.
- Dtmc_isfeasibleKt - class in jline.api.mc
- dtmc_makestochastic(jline.util.matrix.Matrix) - function in jline.api.mc.Dtmc_makestochasticKt
- Normalize a given non-negative matrix into a DTMC
- dtmc_makestochastic(jline.util.matrix.Matrix) - function in jline.lib.kpctoolbox.mc.DTMCKt
- Normalizes a matrix to be a valid stochastic matrix.
- Dtmc_makestochasticKt - class in jline.api.mc
- dtmc_rand(java.lang.Integer) - function in jline.api.mc.Dtmc_randKt
- Form a random infinitesimal generator of a DTMC
- dtmc_rand(java.lang.Integer) - function in jline.lib.kpctoolbox.mc.DTMCKt
- Generates a random stochastic transition matrix.
- Dtmc_randKt - class in jline.api.mc
- dtmc_simulate(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Integer) - function in jline.api.mc.Dtmc_simulateKt
- Simulate a discrete-time Markov chain trajectory
- dtmc_simulate(jline.util.matrix.Matrix,kotlin.DoubleArray,java.lang.Integer) - function in jline.lib.kpctoolbox.mc.DTMCKt
- Simulates a trajectory of a discrete-time Markov chain.
- Dtmc_simulateKt - class in jline.api.mc
- dtmc_solve(jline.util.matrix.Matrix) - function in jline.api.mc.Dtmc_solveKt
- Returns the steady-state solution of a DTMC.
- dtmc_solve(jline.util.matrix.Matrix) - function in jline.lib.kpctoolbox.mc.DTMCKt
- Computes the equilibrium distribution of a discrete-time Markov chain.
- dtmc_solve_reducible(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.util.Map) - function in jline.api.mc.Dtmc_solve_reducibleKt
- Estimate limiting distribution for a DTMC that may have reducible components
- dtmc_solve_reducible_full(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.util.Map) - function in jline.api.mc.Dtmc_solve_reducibleKt
- Full version that returns all computed values
- Dtmc_solve_reducibleKt - class in jline.api.mc
- Dtmc_solveKt - class in jline.api.mc
- dtmc_stmonotone(jline.util.matrix.Matrix) - function in jline.api.mc.Ctmc_stmonotoneKt
- Implementation of the dtmc_stmonotone algorithm Forneau, Pekergin - An Algorithmic Approach to Stochastic Bounds, Performance 2002 Algorithm 1
- dtmc_stochcomp(jline.util.matrix.Matrix,java.util.List) - function in jline.api.mc.Dtmc_stochcompKt
- Returns the stochastic complement of a DTMC
- dtmc_stochcomp(jline.util.matrix.Matrix,kotlin.IntArray) - function in jline.lib.kpctoolbox.mc.DTMCKt
- Computes the stochastic complement of a DTMC partition.
- Dtmc_stochcompKt - class in jline.api.mc
- dtmc_timereverse(jline.util.matrix.Matrix) - function in jline.api.mc.Dtmc_timereverseKt
- Compute the infinitesimal generator of the time-reversed DTMC.
- dtmc_timereverse(jline.util.matrix.Matrix) - function in jline.lib.kpctoolbox.mc.DTMCKt
- Computes the time-reversed transition matrix of a DTMC.
- Dtmc_timereverseKt - class in jline.api.mc
- dtmc_uniformization(jline.util.matrix.Matrix,jline.util.matrix.Matrix,java.lang.Double,java.lang.Double,java.lang.Integer) - function in jline.api.mc.Dtmc_uniformizationKt
- Compute the transient probability distribution of a DTMC using uniformization.
- dtmc_uniformization(kotlin.DoubleArray,jline.util.matrix.Matrix,java.lang.Double,java.lang.Double,java.lang.Integer) - function in jline.lib.kpctoolbox.mc.DTMCKt
- Computes transient probabilities for a DTMC using uniformization.
- Dtmc_uniformizationKt - class in jline.api.mc
- DtmcIsfeasibleAlgo - class in jline.api.mc
- DTMC isfeasible algorithms
- DTMCKt - class in jline.lib.kpctoolbox.mc
- DtmcMakestochasticAlgo - class in jline.api.mc
- DTMC makestochastic algorithms
- DtmcRandAlgo - class in jline.api.mc
- DTMC rand algorithms
- DtmcSimulateAlgo - class in jline.api.mc
- DTMC simulate algorithms
- dtmcSolve(jline.util.matrix.Matrix,java.lang.Double) - function in jline.lib.butools.mc.DTMCSolveKt
- Computes the stationary solution of a discrete time Markov chain.
- dtmcSolve(jline.util.matrix.Matrix) - function in jline.lib.butools.mc.DTMCSolveKt
- Computes the stationary solution of a discrete time Markov chain.
- DtmcSolveAlgo - class in jline.api.mc
- DTMC solve algorithms
- DTMCSolveKt - class in jline.lib.butools.mc
- DtmcSolveReducibleAlgo - class in jline.api.mc
- DTMC solve reducible algorithms
- DtmcSolveReducibleResult - class in jline.api.mc
- Result class for DTMC solve reducible
- DtmcStochcompAlgo - class in jline.api.mc
- DTMC stochcomp algorithms
- DtmcTimereverseAlgo - class in jline.api.mc
- DTMC timereverse algorithms
- DtmcUniformizationAlgo - class in jline.api.mc
- DTMC uniformization algorithms
- DtmcUniformizationResult - class in jline.api.mc
- Result class for DTMC uniformization analysis containing the probability vector and maximum iterations used.
- DUNIFORM - enum entry in jline.lang.constant.ProcessType