Package jline.lib.kpctoolbox.smp
Class DETKt
-
- All Implemented Interfaces:
public final class DETKt
-
-
Method Summary
Modifier and Type Method Description final static Matrixdet_embedded(MatrixCell DET)Computes the embedded DTMC of a deterministic MAP. final static DoubleArraydet_moment(MatrixCell DET, IntArray kset)Computes the k-th moment of a deterministic process. final static Doubledet_scv(MatrixCell DET)Computes the squared coefficient of variation for a deterministic process. final static DoubleArraydet_acf(MatrixCell DET, IntArray kset)Computes the autocorrelation function for a deterministic process. final static Triple<DoubleArray, IntArray, IntArray>det_sample(MatrixCell DET, Integer nSamples, Integer initState)Generates samples from a deterministic MAP. final static MatrixCelldet_sum(MatrixCell DET1, MatrixCell DET2)Computes the sum of two deterministic processes. -
-
Method Detail
-
det_embedded
final static Matrix det_embedded(MatrixCell DET)
Computes the embedded DTMC of a deterministic MAP.
- Parameters:
DET- Deterministic MAP as {D0, D1}- Returns:
Embedded discrete-time transition probability matrix
-
det_moment
final static DoubleArray det_moment(MatrixCell DET, IntArray kset)
Computes the k-th moment of a deterministic process.
- Parameters:
DET- Deterministic MAP as {D0, D1}kset- Array of moment orders to compute- Returns:
Array of moment values
-
det_scv
final static Double det_scv(MatrixCell DET)
Computes the squared coefficient of variation for a deterministic process.
- Parameters:
DET- Deterministic MAP as {D0, D1}- Returns:
SCV value
-
det_acf
final static DoubleArray det_acf(MatrixCell DET, IntArray kset)
Computes the autocorrelation function for a deterministic process.
- Parameters:
DET- Deterministic MAP as {D0, D1}kset- Lags at which to compute ACF- Returns:
Array of ACF values
-
det_sample
final static Triple<DoubleArray, IntArray, IntArray> det_sample(MatrixCell DET, Integer nSamples, Integer initState)
Generates samples from a deterministic MAP.
- Parameters:
DET- Deterministic MAP as {D0, D1}nSamples- Number of samples to generateinitState- Initial state (0-based, or null for random from stationary)- Returns:
Triple of (samples, last states, first states)
-
det_sum
final static MatrixCell det_sum(MatrixCell DET1, MatrixCell DET2)
Computes the sum of two deterministic processes.
- Parameters:
DET1- First deterministic MAPDET2- Second deterministic MAP- Returns:
Combined MAP representing sum
-
-
-
-