Class DiscreteUniform
-
- All Implemented Interfaces:
-
java.io.Serializable,jline.lang.Copyable
public class DiscreteUniform extends DiscreteDistribution implements Serializable
A discrete distribution that samples uniformly among a set of elements.
-
-
Constructor Summary
Constructors Constructor Description DiscreteUniform(double minVal, double maxVal)
-
Method Summary
Modifier and Type Method Description doubleevalCDF(double t)Evaluates the cumulative distribution function (CDF) at the given point. doublegetMean()Gets the mean (expected value) of this distribution. doublegetRate()Gets the rate of this distribution (inverse of mean). doublegetSCV()Gets the squared coefficient of variation (SCV) of this distribution. doublegetSkewness()Gets the skewness of this distribution. doublegetVar()Gets the variance of this distribution. doubleevalLST(double s)Evaluates the Laplace-Stieltjes Transform at s. Array<double>sample(int n)Gets n samples from the distribution Array<double>sample(int n, Random random)Generates random samples from this distribution using the specified random generator. MatrixCellgetProcess()-
Methods inherited from class jline.lang.processes.DiscreteDistribution
evalPMF, evalPMF, evalPMF -
Methods inherited from class jline.lang.processes.Distribution
evalProbInterval, getName, getNumParams, getParam, getSupport, isContinuous, isDisabled, isDiscrete, isImmediate, isMarkovian, mean, name, numParams, param, rate, scv, setNumParams, setParam, skewness, support, var -
Methods inherited from class jline.lang.Copyable
copy -
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
-
Method Detail
-
evalCDF
double evalCDF(double t)
Evaluates the cumulative distribution function (CDF) at the given point.
- Parameters:
t- the point at which to evaluate the CDF- Returns:
the CDF value at point t
-
getMean
double getMean()
Gets the mean (expected value) of this distribution.
- Returns:
the mean value
-
getRate
double getRate()
Gets the rate of this distribution (inverse of mean).
- Returns:
the rate value (1/mean)
-
getSCV
double getSCV()
Gets the squared coefficient of variation (SCV) of this distribution. SCV = Var(X) / E[X]^2.
- Returns:
the squared coefficient of variation
-
getSkewness
double getSkewness()
Gets the skewness of this distribution. Skewness measures the asymmetry of the probability distribution.
- Returns:
the skewness value
-
getVar
double getVar()
Gets the variance of this distribution. Computed as SCV * mean^2.
- Returns:
the variance
-
evalLST
double evalLST(double s)
Evaluates the Laplace-Stieltjes Transform at s. For DiscreteUniform(a, b), LST(s) = (e^(-as) - e^(-(b+1)s)) / ((b-a+1)(1 - e^(-s)))
- Parameters:
s- the Laplace domain variable- Returns:
the LST value at s
-
sample
Array<double> sample(int n)
Gets n samples from the distribution
- Parameters:
n- - the number of samples- Returns:
- n samples from the distribution
-
sample
Array<double> sample(int n, Random random)
Generates random samples from this distribution using the specified random generator.
- Parameters:
n- the number of samples to generaterandom- the random number generator to use- Returns:
array of random samples
-
getProcess
MatrixCell getProcess()
-
-
-
-