Package jline.lib.kpctoolbox.mmpp
Class MMPPKt
-
- All Implemented Interfaces:
public final class MMPPKt
-
-
Method Summary
Modifier and Type Method Description final static MatrixCellmmpp2_fit(Double E1, Double E2, Double E3, Double ACFLAG1)Fits a 2-state MMPP (MMPP2) to match first three moments and lag-1 autocorrelation. final static MatrixCellmmpp2_fit1(Double E1, Double E2, Double E3)Fits MMPP2 using only moments (no autocorrelation). final static MatrixCellmmpp2_fit2(Double E1, Double E2, Double E3, Double acf1)Fits MMPP2 using moments and lag-1 ACF. final static MatrixCellmmpp2_fit3(Double E1, Double E2, Double E3, Double acf2)Fits MMPP2 using moments and lag-2 ACF (approximation). final static MatrixCellmmpp2_fit4(Double E1, Double E2, Double E3, DoubleArray acfValues)Fits MMPP2 using moments and multiple ACF lags. final static MatrixCellmmpp2_fitc(Double meanCount, Double varCount, Double scale)Fits MMPP2 from counting process statistics. final static MatrixCellmmpp2_fitc_approx(Double meanCount, Double varCount, Double scale, Double acfCount)Fits MMPP2 from counting process with approximation. final static MatrixCellmmpp2_fitc_theoretical(Double lambda1, Double lambda2, Double q12, Double q21)Theoretical MMPP2 fitting from counting process. final static DoubleArraymmpp_rand(MatrixCell MAP, Integer nSamples, Long seed)Generates random samples from an MMPP. -
-
Method Detail
-
mmpp2_fit
final static MatrixCell mmpp2_fit(Double E1, Double E2, Double E3, Double ACFLAG1)
Fits a 2-state MMPP (MMPP2) to match first three moments and lag-1 autocorrelation.
- Parameters:
E1- First moment (mean)E2- Second momentE3- Third momentACFLAG1- Lag-1 autocorrelation (must be in 0, 0.- Returns:
Fitted MAP as {D0, D1}
-
mmpp2_fit1
final static MatrixCell mmpp2_fit1(Double E1, Double E2, Double E3)
Fits MMPP2 using only moments (no autocorrelation).
- Parameters:
E1- First momentE2- Second momentE3- Third moment- Returns:
Fitted MAP as {D0, D1}
-
mmpp2_fit2
final static MatrixCell mmpp2_fit2(Double E1, Double E2, Double E3, Double acf1)
Fits MMPP2 using moments and lag-1 ACF.
- Parameters:
E1- First momentE2- Second momentE3- Third momentacf1- Lag-1 autocorrelation- Returns:
Fitted MAP as {D0, D1}
-
mmpp2_fit3
final static MatrixCell mmpp2_fit3(Double E1, Double E2, Double E3, Double acf2)
Fits MMPP2 using moments and lag-2 ACF (approximation).
- Parameters:
E1- First momentE2- Second momentE3- Third momentacf2- Lag-2 autocorrelation- Returns:
Fitted MAP as {D0, D1}
-
mmpp2_fit4
final static MatrixCell mmpp2_fit4(Double E1, Double E2, Double E3, DoubleArray acfValues)
Fits MMPP2 using moments and multiple ACF lags.
- Parameters:
E1- First momentE2- Second momentE3- Third momentacfValues- Array of ACF values at lags 1, 2, ...- Returns:
Fitted MAP as {D0, D1}
-
mmpp2_fitc
final static MatrixCell mmpp2_fitc(Double meanCount, Double varCount, Double scale)
Fits MMPP2 from counting process statistics.
- Parameters:
meanCount- Mean countvarCount- Variance of countsscale- Time scale- Returns:
Fitted MAP as {D0, D1}
-
mmpp2_fitc_approx
final static MatrixCell mmpp2_fitc_approx(Double meanCount, Double varCount, Double scale, Double acfCount)
Fits MMPP2 from counting process with approximation.
- Parameters:
meanCount- Mean countvarCount- Variance of countsscale- Time scaleacfCount- ACF of counting process- Returns:
Fitted MAP as {D0, D1}
-
mmpp2_fitc_theoretical
final static MatrixCell mmpp2_fitc_theoretical(Double lambda1, Double lambda2, Double q12, Double q21)
Theoretical MMPP2 fitting from counting process.
- Parameters:
lambda1- Arrival rate in state 1lambda2- Arrival rate in state 2q12- Transition rate from state 1 to 2q21- Transition rate from state 2 to 1- Returns:
Fitted MAP as {D0, D1}
-
mmpp_rand
final static DoubleArray mmpp_rand(MatrixCell MAP, Integer nSamples, Long seed)
Generates random samples from an MMPP.
- Parameters:
MAP- MMPP as {D0, D1}nSamples- Number of samples to generateseed- Random seed (optional)- Returns:
Array of inter-arrival times
-
-
-
-