Package jline.api.mam

Class Map_probKt

  • All Implemented Interfaces:

    
    public final class Map_probKt
    
                        
    • Nested Class Summary

      Nested Classes 
      Modifier and Type Class Description
    • Field Summary

      Fields 
      Modifier and Type Field Description
    • Constructor Summary

      Constructors 
      Constructor Description
    • Enum Constant Summary

      Enum Constants 
      Enum Constant Description
    • Method Summary

      Modifier and Type Method Description
      final static Matrix map_prob(MatrixCell MAP) Computes the equilibrium distribution of the underlying continuous-time Markov chain for a MAP.
      final static Matrix map_prob(Matrix D0, Matrix D1) Computes the equilibrium distribution of the underlying continuous-time Markov chain for a MAP.
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Constructor Detail

    • Method Detail

      • map_prob

         final static Matrix map_prob(MatrixCell MAP)

        Computes the equilibrium distribution of the underlying continuous-time Markov chain for a MAP.

        This function calculates the steady-state probabilities of the continuous-time Markov chain underlying a Markovian Arrival Process (MAP). The equilibrium distribution is computed by solving the system Q*π = 0, where Q = D0 + D1 is the infinitesimal generator matrix.

        Parameters:
        MAP - The Markovian Arrival Process stored in a MatrixCell, containing the (D0, D1) matrices
        Returns:

        The equilibrium distribution as a Matrix (row vector)

      • map_prob

         final static Matrix map_prob(Matrix D0, Matrix D1)

        Computes the equilibrium distribution of the underlying continuous-time Markov chain for a MAP.

        This function calculates the steady-state probabilities of the continuous-time Markov chain underlying a Markovian Arrival Process (MAP) given the D0 and D1 matrices directly.

        Parameters:
        D0 - The hidden transition matrix of the MAP
        D1 - The visible transition matrix of the MAP
        Returns:

        The equilibrium distribution as a Matrix (row vector)