Uses of Class
jline.util.Matrix
Package
Description
Procedural algorithms for solving stochastic models
Input/output from the command line or XML files.
Abstractions to declare basic elements of a model.
This package contains the classes used the specify LayeredNetwork objects
This package contains the classes used the specify Network objects
This package contains statistical distributions used to specify arrival rates, service rates, and item popularities
Classes that model the individual sections that form a Network node
Classes that model the state of a network and its individual nodes
Classes that partially migrate third-party libraries to Java
Solver superclasses and related data structures.
Solution approaches based on Continuous-Time Markov Chain solution
Solution approaches based on mean-field and fluid approximations.
Classes that embody different fluid ODE analysis algorithms
Classes that generate the ordinary differential equations (ODEs) used in the Fluid solver
Classes that implement the smoothing method for transient fluid analysis
Wrapper for the Java Modelling Tools (JMT) suite solvers
LINE's native Layered Network (LN) solver
Analysis approaches based on matrix-analytic methods
Analysis approaches based on Mean-Value Analysis (MVA)
Classes for coordinate the execution and performance metric estimation in MVA-based algorithms
Analysis approaches based on Normalizing Costant (NC) methods
Analysis approaches based on the Stochastic Simulation Algorithm (SSA) for Markov chains
This package contains some fundamental data structures and utilities
-
Uses of Matrix in jline.api
Modifier and TypeMethodDescriptionstatic Matrix
CACHE.cache_erec
(Matrix gamma, Matrix m) Computes the cache miss rate using an exact recursive method.static Matrix
CACHE.cache_prob_asy
(Matrix gamma, Matrix m) Estimate asymptotic values of the cache state probabilities at steady-state.static Matrix
CACHE.cache_prob_erec
(Matrix gamma, Matrix m) Computes the cache state probabilities using an exact recursive method.static Matrix
CACHE.cache_prob_rayint
(Matrix gamma, Matrix m) Computes the cache state probabilities using the ray method.static Matrix
CACHE.cache_t_hlru
(Matrix gamma, Matrix m) Computes the characteristic time of each list in the TTL approximation of h-LRU.static Matrix
CACHE.cache_t_hlru_aux
(double[] x, Matrix gamma, Matrix m, int n, int h) Auxiliary function for cache_t_hlru inner optimization.static Matrix
CACHE.cache_t_lrum
(Matrix gamma, Matrix m) Computes the characteristic time of each list in the TTL approximation of LRU(m).static Matrix
CACHE.cache_ttl_hlru
(Matrix[] lambda, Matrix m) Solve hierarchical least-recently-used caches h-LRU using the TTL approximation.static Matrix
CACHE.cache_ttl_lrua
(Matrix[] lambda, Matrix[][] R, Matrix m) static Matrix
CACHE.cache_ttl_lrum
(Matrix[] gamma, Matrix m) Solve multi-list least-recently-used caches LRU(m) using the TTL approximation.static Matrix
CACHE.cache_ttl_lrum_map
(Matrix[][] D0Matrix, Matrix[][] D1Matrix, Matrix m) static Matrix
CACHE.cache_xi_bvh
(Matrix gamma, Matrix m) Computes the cache xi terms using the iterative method used in Gast-van Houdt, SIGMETRICS 2015.static Matrix
MC.ctmc_makeinfgen
(Matrix Q) Normalize the input matrix diagonal to be an infinitesimal generator.static Matrix
MC.ctmc_rand
(int length) Form a random infinitesimal generator of a CTMCstatic Matrix
MC.ctmc_solve
(Matrix Q) Return the steady-state probability of a CTMC.static Matrix
MC.ctmc_timereverse
(Matrix Q) Compute the infinitesimal generator of the time-reserved CTMCstatic Matrix
MC.ctmc_uniformization
(Matrix pi0, Matrix Q, double t) Return the transient probability distribution of the CTMC via the uniformization method.static Matrix
MC.dtmc_makestochastic
(Matrix P) Normalize a given non-negative matrix into a DTMCstatic Matrix
MC.dtmc_rand
(int length) Form a random infinitesimal generator of a DTMCstatic Matrix
MC.dtmc_solve
(Matrix P) Returns the steady-state solution of a DTMC.static Matrix
MC.dtmc_stochcomp
(Matrix P, List<Integer> I) Returns the stochastic complement of a DTMCstatic Matrix
MC.dtmc_timereverse
(Matrix P) Compute the infinitesimal generator of the time-reversed DTMC.static Matrix
FJ.findPaths
(NetworkStruct sn, Matrix P, int startNode, int endNode, int r, ArrayList<Integer> toMerge, Matrix QN, Matrix TN, double currentTime, Matrix fjclassmap, Matrix fjforkmap, Network nonfjmodel) Finds the response times along each path leading out of startNode up to (and not including) endNodestatic Matrix
FJ.findPathsCS
(NetworkStruct sn, Matrix P, int curNode, int endNode, int curClass, ArrayList<Integer> toMerge, Matrix QN, Matrix TN, double currentTime, Matrix fjclassmap, Matrix fjforkmap, Network nonfjmodel) Finds the response times along each path leading out of curNode up to (and not including) endNode Variant for models with class switchingstatic Matrix
static Matrix
MAM.map_acf
(MatrixCell MAP) Computes the autocorrelation function (ACF) for a given MAP using a default lag of 1.static Matrix
MAM.map_acf
(MatrixCell MAP, Matrix lags) Computes the autocorrelation function (ACF) for a given MAP at multiple lags using a MatrixCell.static Matrix
Computes the autocorrelation function (ACF) for a given MAP using a default lag of 1.static Matrix
Computes the autocorrelation function (ACF) for a given MAP at a specific lag.static Matrix
Computes the autocorrelation function (ACF) for a given MAP at multiple lags.static Matrix
MAM.map_cdf
(MatrixCell MAP, Matrix points) Computes the cumulative distribution function (CDF) of the inter-arrival times of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static Matrix
Computes the cumulative distribution function (CDF) of the inter-arrival times of a Markovian Arrival Process (MAP).static Matrix
MAM.map_embedded
(MatrixCell MAP) Computes the embedded discrete-time Markov chain (DTMC) matrix of a MAP given as a MatrixCell.static Matrix
MAM.map_embedded
(Matrix D0, Matrix D1) Computes the embedded discrete-time Markov chain (DTMC) matrix of a MAP.static Matrix
MAM.map_infgen
(MatrixCell MAP) Computes the infinitesimal generator matrix (Q) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).static Matrix
MAM.map_infgen
(Matrix D0, Matrix D1) Computes the infinitesimal generator matrix (Q) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).static Matrix
MAM.map_pie
(MatrixCell MAP) Computes the steady-state probability vector of the embedded DTMC of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static Matrix
Computes the steady-state probability vector of the embedded Discrete Time Markov Chain (DTMC) associated with a Markovian Arrival Process (MAP).static Matrix
MAM.map_piq
(MatrixCell MAP) Computes the steady-state vector (pi) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).static Matrix
Computes the steady-state vector (pi) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).static Matrix
MAM.map_varcount
(MatrixCell MAP, Matrix t) Computes the variance of the counts in a MAP over multiple time periods using a MatrixCell.static Matrix
MAM.map_varcount
(Matrix D0, Matrix D1, Matrix t) Computes the variance of the counts in a MAP over multiple time periods.static Matrix
MAM.mmap_backward_moment
(MatrixCell MMAP, Matrix ORDERS) Computes the backward moments of an MMAP for specified orders with normalization.static Matrix
MAM.mmap_backward_moment
(MatrixCell MMAP, Matrix ORDERS, int NORM) Computes the backward moments of an MMAP for specified orders.static Matrix
MAM.mmap_count_idc
(MatrixCell MMAP, double t) Computes the index of dispersion for counts (IDC) for a Markovian Arrival Process with marked arrivals (MMAP) over a time period.static Matrix
MAM.mmap_count_lambda
(MatrixCell mmap) Computes the arrival rate vector of the counting process for the given Marked MAP (MMAP).static Matrix
MAM.mmap_count_mean
(MatrixCell MMAP, double t) Computes the mean count vector of events of different types in a Markovian Arrival Process with marked arrivals (MMAP) over a time period.static Matrix
MAM.mmap_count_var
(MatrixCell MMAP, double t) Computes the variance of the count vector of events of different types in a Markovian Arrival Process with marked arrivals (MMAP) over a time period.static Matrix
MAM.mmap_cross_moment
(MatrixCell mmap, int k) Computes the k-th cross-moment matrix for a given MMAP.static Matrix
MAM.mmap_forward_moment
(MatrixCell MMAP, Matrix ORDERS) Computes the forward moments of an MMAP for specified orders with normalization.static Matrix
MAM.mmap_forward_moment
(MatrixCell MMAP, Matrix ORDERS, int NORM) Computes the forward moments of an MMAP for specified orders.static Matrix
MAM.mmap_idc
(MatrixCell MMAP) Computes the asymptotic index of dispersion for counts (IDC) for a Markovian Arrival Process with marked arrivals (MMAP).static Matrix
MAM.mmap_lambda
(MatrixCell MMAP) Alias for mmap_count_lambda.static Matrix
MAM.mmap_pc
(MatrixCell MMAP) Computes the proportion of counts (PC) for each type in a Markovian Arrival Process with marked arrivals (MMAP).static Matrix
TRACE.mtrace_mean
(double[] trace, int ntypes, int[] type) Computes the mean of a trace, divided by types.static Matrix
PFQN.pfqn_cdfun
(Matrix nvec, Map<Station, SerializableFunction<Matrix, Double>> cdscaling, List<Station> stations) Evaluate class-dependent (CD) scaling functionprotected static Matrix
PFQN.pfqn_le_hessian
(Matrix L, Matrix N, Matrix u0) Auxiliary function to compute the Hessian used in the logistic expansion methodprotected static Matrix
PFQN.pfqn_le_hessianZ
(Matrix L, Matrix N, Matrix Z, Matrix u, double v) Auxiliary function to compute the Hessian used in the logistic expansion method in models with delaysstatic Matrix
PFQN.pfqn_lldfun
(Matrix n, Matrix lldscaling, Matrix nservers) Evaluate limited-load dependent (LLD) functionstatic Matrix
PFQN.pfqn_mu_ms
(int N, int m, int c) static Matrix
PFQN.pfqn_mushift
(Matrix mu, int k) Shifts a load-dependent scaling vector by one positionstatic Matrix
static Matrix
SN.snGetAvgArvRFromTput
(NetworkStruct sn, Matrix TN, Matrix TH) Calculates the average arrival rates at each station from the network throughputs.Modifier and TypeMethodDescriptionMAM.mmap_sigma2
(MatrixCell mmap) Computes the second-order sigma values (covariances) for a given MMAP.static Map<StatefulNode,
Matrix> SN.snGetStateAggr
(NetworkStruct sn) Aggregates the state of the network.Modifier and TypeMethodDescriptionstatic Matrix
CACHE.cache_erec
(Matrix gamma, Matrix m) Computes the cache miss rate using an exact recursive method.static Ret.cacheGammaLp
CACHE.cache_gamma_lp
(Matrix[] lambda, Matrix[][] R) Computes access factors for the cache.static Ret.cacheMissRayInt
CACHE.cache_miss_rayint
(Matrix gamma, Matrix m, MatrixCell lambda) Estimates the cache miss rate and related metrics using the ray method for PDEs.static Ret.cacheMVA
Exact recursive solution of the caching model.static Matrix
CACHE.cache_prob_asy
(Matrix gamma, Matrix m) Estimate asymptotic values of the cache state probabilities at steady-state.static Matrix
CACHE.cache_prob_erec
(Matrix gamma, Matrix m) Computes the cache state probabilities using an exact recursive method.static Matrix
CACHE.cache_prob_rayint
(Matrix gamma, Matrix m) Computes the cache state probabilities using the ray method.static Ret.cacheRayInt
CACHE.cache_rayint
(Matrix gamma, Matrix m) Approximate the normalizing constant of the cache steady state distribution using the ray method.static Matrix
CACHE.cache_t_hlru
(Matrix gamma, Matrix m) Computes the characteristic time of each list in the TTL approximation of h-LRU.static Matrix
CACHE.cache_t_hlru_aux
(double[] x, Matrix gamma, Matrix m, int n, int h) Auxiliary function for cache_t_hlru inner optimization.static Matrix
CACHE.cache_t_lrum
(Matrix gamma, Matrix m) Computes the characteristic time of each list in the TTL approximation of LRU(m).static Matrix
CACHE.cache_ttl_hlru
(Matrix[] lambda, Matrix m) Solve hierarchical least-recently-used caches h-LRU using the TTL approximation.static Matrix
CACHE.cache_ttl_lrua
(Matrix[] lambda, Matrix[][] R, Matrix m) static Matrix
CACHE.cache_ttl_lrum
(Matrix[] gamma, Matrix m) Solve multi-list least-recently-used caches LRU(m) using the TTL approximation.static Matrix
CACHE.cache_ttl_lrum_map
(Matrix[][] D0Matrix, Matrix[][] D1Matrix, Matrix m) static Matrix
CACHE.cache_xi_bvh
(Matrix gamma, Matrix m) Computes the cache xi terms using the iterative method used in Gast-van Houdt, SIGMETRICS 2015.static Ret.cacheXiFp
CACHE.cache_xi_fp
(Matrix gamma, Matrix m, Matrix xi) Estimate cache xi terms using a fixed-point algorithm.static Ret.pfqnNcXQ
PFQN.compute_norm_const
(Matrix L, Matrix N, Matrix Z, SolverOptions options) Run a normalizing constant solution method in a load-independent modelstatic Ret.pfqnNc
PFQN.compute_norm_const_ld
(Matrix L, Matrix N, Matrix Z, Matrix mu, SolverOptions options) Run a normalizing constant solution method in a load-dependent modelstatic Matrix
MC.ctmc_makeinfgen
(Matrix Q) Normalize the input matrix diagonal to be an infinitesimal generator.static Ret.ctmcSimulation
MC.ctmc_simulate
(Matrix Q, double[] pi0, int n) Form a random infinitesimal generator of CTMCstatic Matrix
MC.ctmc_solve
(Matrix Q) Return the steady-state probability of a CTMC.static Matrix
MC.ctmc_timereverse
(Matrix Q) Compute the infinitesimal generator of the time-reserved CTMCstatic Matrix
MC.ctmc_uniformization
(Matrix pi0, Matrix Q, double t) Return the transient probability distribution of the CTMC via the uniformization method.static Matrix
MC.dtmc_makestochastic
(Matrix P) Normalize a given non-negative matrix into a DTMCstatic Matrix
MC.dtmc_solve
(Matrix P) Returns the steady-state solution of a DTMC.static Matrix
MC.dtmc_stochcomp
(Matrix P, List<Integer> I) Returns the stochastic complement of a DTMCstatic Matrix
MC.dtmc_timereverse
(Matrix P) Compute the infinitesimal generator of the time-reversed DTMC.protected static Ret.pfqnLinearizerCore
PFQN.egflinearizer_core
(Matrix L, int M, int R, Matrix N_1, Matrix Z, Matrix Q, Matrix[] Delta, SchedStrategy[] type, double tol, int maxiter, Matrix alpha) Core method for the extended general form linearizer.protected static Ret.pfqnLinearizerEstimate
PFQN.egflinearizer_estimate
(Matrix L, int M, int R, Matrix N_1, Matrix Z, Matrix Q, Matrix[] Delta, Matrix W, Matrix alpha) Estimate method for the extended general form linearizer.protected static Ret.pfqnLinearizerForwardMVA
PFQN.egflinearizer_forwardMVA
(Matrix L, int M, int R, SchedStrategy[] type, Matrix N_1, Matrix Z, Matrix[] Q_1) Forward Mean Value Analysis method for the extended general form linearizer.static Matrix
FJ.findPaths
(NetworkStruct sn, Matrix P, int startNode, int endNode, int r, ArrayList<Integer> toMerge, Matrix QN, Matrix TN, double currentTime, Matrix fjclassmap, Matrix fjforkmap, Network nonfjmodel) Finds the response times along each path leading out of startNode up to (and not including) endNodestatic Matrix
FJ.findPathsCS
(NetworkStruct sn, Matrix P, int curNode, int endNode, int curClass, ArrayList<Integer> toMerge, Matrix QN, Matrix TN, double currentTime, Matrix fjclassmap, Matrix fjforkmap, Network nonfjmodel) Finds the response times along each path leading out of curNode up to (and not including) endNode Variant for models with class switchingstatic Matrix
protected static Ret.pfqnLinearizerMSCore
PFQN.linearizerms_core
(Matrix L, int M, int R, Matrix N_1, Matrix Z, Matrix nservers, Matrix Q, Matrix P, Matrix PB, Matrix[] Delta, Matrix type, double tol, int maxiter) protected static Ret.pfqnLinearizerMSEstimate
PFQN.linearizerms_estimate
(int M, int R, Matrix N_1, Matrix nservers, Matrix Q, Matrix P, Matrix PB, Matrix[] Delta) protected static Ret.pfqnLinearizerMSForwardMVA
PFQN.linearizerms_forwardMVA
(Matrix L, int M, int R, Matrix N_1, Matrix Z, Matrix nservers, Matrix type, Matrix[] Q_1, Matrix[] P_1, Matrix PB_1) static Ret.lossnErlangFP
LOSSN.lossn_erlangfp
(Matrix nuVec, Matrix Amat, Matrix cVec) This method calculates the Erlang fixed point approximation for loss networks.static Matrix
MAM.map_acf
(MatrixCell MAP, Matrix lags) Computes the autocorrelation function (ACF) for a given MAP at multiple lags using a MatrixCell.static Matrix
Computes the autocorrelation function (ACF) for a given MAP using a default lag of 1.static Matrix
Computes the autocorrelation function (ACF) for a given MAP at a specific lag.static Matrix
Computes the autocorrelation function (ACF) for a given MAP at multiple lags.static double[]
Computes the autocorrelation function coefficients (ACFC) for a MAP counting process.static Matrix
MAM.map_cdf
(MatrixCell MAP, Matrix points) Computes the cumulative distribution function (CDF) of the inter-arrival times of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static Matrix
Computes the cumulative distribution function (CDF) of the inter-arrival times of a Markovian Arrival Process (MAP).static Matrix
MAM.map_embedded
(Matrix D0, Matrix D1) Computes the embedded discrete-time Markov chain (DTMC) matrix of a MAP.static double
Computes the gamma parameter for a MAP, which is the ratio of the ACF values at lag 2 and lag 1.static double
Computes the asymptotic index of dispersion (IDC) for a Markovian Arrival Process (MAP).static Matrix
MAM.map_infgen
(Matrix D0, Matrix D1) Computes the infinitesimal generator matrix (Q) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).static double
MAM.map_lambda
(Matrix D0, Matrix D1) Computes the arrival rate (lambda) of a Markovian Arrival Process (MAP).static MatrixCell
MAM.map_mark
(MatrixCell MAP, Matrix prob) Creates a Marked Markovian Arrival Process (MMAP) by marking a given Markovian Arrival Process (MAP) with additional phases based on specified marking probabilities.static double
Computes the mean inter-arrival time of a Markovian Arrival Process (MAP).static double
MAM.map_moment
(Matrix D0, Matrix D1, int order) Computes the raw moments of the inter-arrival times of a Markovian Arrival Process (MAP).static MatrixCell
MAM.map_normalize
(Matrix D0, Matrix D1) Sanitizes the (D0, D1) matrices of a Markovian Arrival Process (MAP) by ensuring all elements are non-negative and adjusting diagonal elements.static Matrix
Computes the steady-state probability vector of the embedded Discrete Time Markov Chain (DTMC) associated with a Markovian Arrival Process (MAP).static Matrix
Computes the steady-state vector (pi) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).static double[]
MAM.map_sample
(Matrix D0, Matrix D1, long n, Random random) Generates samples of inter-arrival times from a MAP using a specified number of samples and a random generator.static MatrixCell
Rescales the mean inter-arrival time of a Markovian Arrival Process (MAP) to a specified new mean.static double
Computes the squared coefficient of variation (SCV) of the inter-arrival times of a Markovian Arrival Process (MAP).static double
Computes the skewness of the inter-arrival times for a MAP.static double
Computes the variance of the inter-arrival times for a MAP.static Matrix
MAM.map_varcount
(MatrixCell MAP, Matrix t) Computes the variance of the counts in a MAP over multiple time periods using a MatrixCell.static double
MAM.map_varcount
(Matrix D0, Matrix D1, double t) Computes the variance of the counts in a MAP over a time period t.static Matrix
MAM.map_varcount
(Matrix D0, Matrix D1, Matrix t) Computes the variance of the counts in a MAP over multiple time periods.static Matrix
MAM.mmap_backward_moment
(MatrixCell MMAP, Matrix ORDERS) Computes the backward moments of an MMAP for specified orders with normalization.static Matrix
MAM.mmap_backward_moment
(MatrixCell MMAP, Matrix ORDERS, int NORM) Computes the backward moments of an MMAP for specified orders.static MatrixCell
MAM.mmap_exponential
(Matrix lambda) Fits a Markovian Arrival Process with marked arrivals (MMAP) with a single state based on the given arrival rates for each job class.static MatrixCell
MAM.mmap_exponential
(Matrix lambda, int n) Fits an order-n Markovian Arrival Process with marked arrivals (MMAP) based on the given arrival rates for each job class.static Matrix
MAM.mmap_forward_moment
(MatrixCell MMAP, Matrix ORDERS) Computes the forward moments of an MMAP for specified orders with normalization.static Matrix
MAM.mmap_forward_moment
(MatrixCell MMAP, Matrix ORDERS, int NORM) Computes the forward moments of an MMAP for specified orders.static MatrixCell
MAM.mmap_hide
(MatrixCell MMAP, Matrix types) Hides specified types of arrivals in a Markovian Arrival Process with marked arrivals (MMAP).static MatrixCell
MAM.mmap_mark
(MatrixCell MMAP, Matrix prob) Converts a Markovian Arrival Process with marked arrivals (MMAP) into a new MMAP with redefined classes based on a given probability matrix.static MatrixCell
MAM.mmap_mixture
(Matrix alpha, Map<Integer, MatrixCell> MAPs) Creates a mixture of MMAPs using the given weights (alpha) and MAPs.static Ret.mamMMAPMixtureFit
Fits a mixture of Markovian Arrival Processes (MMAPs) to match the given cross-moments.static MatrixCell
MAM.mmap_scale
(MatrixCell MMAP, Matrix M) Changes the mean inter-arrival time of a Markovian Arrival Process with marked arrivals (MMAP).static Ret.FJApprox
Fork-Join Transform approach to evaluate queueing networks including fork-join systems.static Ret.npfqnNonexpApprox
NPFQN.npfqn_nonexp_approx
(String method, NetworkStruct sn, Matrix ST, Matrix V, Matrix SCV, Matrix Tin, Matrix Uin, Matrix gamma, Matrix nservers) Approximates non-product-form queueing networks using the specified method.static MatrixCell
NPFQN.npfqn_traffic_merge_cs
(Map<Integer, MatrixCell> MMAPs, Matrix prob) Merges MMAP traffic flows with class switching using default parameters.static MatrixCell
NPFQN.npfqn_traffic_merge_cs
(Map<Integer, MatrixCell> MMAPs, Matrix prob, String config) Merges MMAP traffic flows with class switching.static Map<Integer,
MatrixCell> NPFQN.npfqn_traffic_split_cs
(MatrixCell MMAP, Matrix P) Splits MMAP traffic flows with class switching.static Ret.pfqnAMVA
AQL approximate MVA for a closed queueing network model.static Ret.pfqnAMVA
AQL approximate MVA for a closed queueing network model.static Ret.pfqnAMVA
AQL approximate MVA for a closed queueing network model.static Ret.pfqnAMVA
Bard-Schweitzer approximate mean value analysis algorithmstatic Ret.pfqnAMVA
Bard-Schweitzer approximate mean value analysis algorithmstatic Ret.pfqnAMVA
Bard-Schweitzer approximate mean value analysis algorithmstatic Ret.pfqnAMVA
Bard-Schweitzer approximate mean value analysis algorithmstatic Ret.pfqnAMVA
Bard-Schweitzer approximate mean value analysis algorithmstatic Ret.pfqnAMVA
PFQN.pfqn_bs
(Matrix L, Matrix N, Matrix Z, double tol, int maxiter, Matrix QN0, SchedStrategy[] type) Bard-Schweitzer approximate mean value analysis algorithmstatic Ret.pfqnNc
Compute the normalizing constant using the convolution algorithmstatic Ret.pfqnNc
Compute the normalizing constant using the convolution algorithmstatic Matrix
PFQN.pfqn_cdfun
(Matrix nvec, Map<Station, SerializableFunction<Matrix, Double>> cdscaling, List<Station> stations) Evaluate class-dependent (CD) scaling functionstatic Ret.pfqnComomrm
PFQN.pfqn_comomrm
(Matrix L, Matrix N, Matrix Z, Integer m, double atol) Compute the normalizing constant of a repairmen model using COMOMstatic Ret.pfqnComomrmLd
PFQN.pfqn_comomrm_ld
(Matrix L, Matrix N, Matrix Z, Matrix mu, SolverOptions options) Run the COMOM normalizing constant solution method on a repairman modelstatic Ret.pfqnAMVAMS
PFQN.pfqn_conwayms
(Matrix L, Matrix N, Matrix Z) static Ret.pfqnAMVAMS
PFQN.pfqn_conwayms
(Matrix L, Matrix N, Matrix Z, int[] nservers) static Ret.pfqnAMVAMS
PFQN.pfqn_conwayms
(Matrix L, Matrix N, Matrix Z, int[] nservers, SchedStrategy[] type, double tol, int maxiter) static Ret.pfqnCore
PFQN.pfqn_conwayms_core
(Matrix L, int M, int R, Matrix N_1, Matrix Z, int[] nservers, Matrix Q, Matrix P, Matrix PB, MatrixCell Delta, SchedStrategy[] type, double tol, int maxiter) static Ret.pfqnEstimate
PFQN.pfqn_conwayms_estimate
(int M, int R, Matrix N_1, int[] nservers, Matrix Q, Matrix P, Matrix PB, MatrixCell Delta, Matrix W) static Ret.pfqnForwardMVA
PFQN.pfqn_conwayms_forwardmva
(Matrix L, int M, int R, Matrix N_1, Matrix Z, int[] nservers, SchedStrategy[] type, MatrixCell Q_1, MatrixCell P_1, Matrix PB_1, Matrix T_1) static Ret.pfqnNc
Cubature method to compute the normalizing constant of a load-independent closed queueing network modelstatic Ret.pfqnNc
Cubature method to compute the normalizing constant of a load-independent closed queueing network modelstatic Ret.pfqnAMVA
PFQN.pfqn_egflinearizer
(Matrix L, Matrix N, Matrix Z, SchedStrategy[] type, double tol, int maxiter, Matrix alpha) Extended general form linearizer approximate mean value analysis algorithm.static Ret.pfqnFnc
Compute scaling factor of a load-dependent functional server use to calculate the meanstatic Ret.pfqnFnc
Compute scaling factor of a load-dependent functional server use to calculate the mean instantiated with scaling constant c.static Ret.pfqnAMVA
PFQN.pfqn_gflinearizer
(Matrix L, Matrix N, Matrix Z, SchedStrategy[] type, double tol, int maxiter, double alpha) static Ret.pfqnNc
PFQN.pfqn_gld
(Matrix L, Matrix N, Matrix mu, SolverOptions options) Compute the normalizing constant of a single-class load-dependent closed queueing network modelstatic Ret.pfqnNcComplex
PFQN.pfqn_gld_complex
(ComplexMatrix L, Matrix N, Matrix mu, SolverOptions options) Compute the normalizing constant of a single-class load-dependent closed queueing network model with complex demands.static Ret.pfqnNc
PFQN.pfqn_gldsingle
(Matrix L, Matrix N, Matrix mu, SolverOptions options) Auxiliary function used by pfqn_gld to computer the normalizing constant in a single-class load-dependent model.static Ret.pfqnNcComplex
PFQN.pfqn_gldsingle_complex
(ComplexMatrix L, Matrix N, Matrix mu, SolverOptions options) Auxiliary function used by pfqn_gld to computer the normalizing constant in a single-class load-dependent model with complex demands.static Ret.pfqnNc
Knessl-Tier asymptotic expansion of the normalizing constant using the ray method.static Ret.pfqnNc
Logistic expansion method to compute the normalizing constantprotected static Ret.pfqnLeFpi
PFQN.pfqn_le_fpi
(Matrix L, Matrix N) Fixed-point iteration used in the logistic expansion methodprotected static Ret.pfqnLeFpiZ
PFQN.pfqn_le_fpiZ
(Matrix L, Matrix N, Matrix Z) Fixed-point iteration used in the logistic expansion method in models with delaysprotected static Matrix
PFQN.pfqn_le_hessian
(Matrix L, Matrix N, Matrix u0) Auxiliary function to compute the Hessian used in the logistic expansion methodprotected static Matrix
PFQN.pfqn_le_hessianZ
(Matrix L, Matrix N, Matrix Z, Matrix u, double v) Auxiliary function to compute the Hessian used in the logistic expansion method in models with delaysstatic Ret.pfqnAMVA
PFQN.pfqn_linearizer
(Matrix L, Matrix N, Matrix Z, SchedStrategy[] type) Linearizer approximate mean value analysis algorithmstatic Ret.pfqnAMVA
PFQN.pfqn_linearizer
(Matrix L, Matrix N, Matrix Z, SchedStrategy[] type, double tol) Linearizer approximate mean value analysis algorithmstatic Ret.pfqnAMVA
PFQN.pfqn_linearizer
(Matrix L, Matrix N, Matrix Z, SchedStrategy[] type, double tol, int maxiter) Linearizer approximate mean value analysis algorithmstatic Ret.pfqnAMVAMS
PFQN.pfqn_linearizerms
(Matrix L, Matrix N, Matrix Z, Matrix nservers) Multiserver version of Krzesinski's Linearizerstatic Ret.pfqnAMVAMS
Multiserver version of Krzesinski's Linearizerstatic Ret.pfqnAMVAMS
Multiserver version of Krzesinski's Linearizerstatic Ret.pfqnAMVAMS
PFQN.pfqn_linearizerms
(Matrix L, Matrix N, Matrix Z, Matrix nservers, Matrix type, double tol, int maxiter) Multiserver version of Krzesinski's Linearizer as described in Conway 1989, Fast Approximate Solution of Queueing Networks with Multi-Server Chain- Dependent FCFS Queues.static Ret.pfqnAMVA
PFQN.pfqn_linearizermx
(Matrix lambda, Matrix L, Matrix N, Matrix Z, Matrix nservers, SchedStrategy[] type, double tol, int maxiter, String method) Linearizer method for mixed models with multi-server stationsstatic Matrix
PFQN.pfqn_lldfun
(Matrix n, Matrix lldscaling, Matrix nservers) Evaluate limited-load dependent (LLD) functionstatic Ret.pfqnNc
Logistic sampling method to compute the normalizing constantstatic Ret.pfqnNc
Logistic sampling method to compute the normalizing constantprotected static double
PFQN.pfqn_ls_helper
(double[] x, int K, int M, double eta, double eN, Matrix L, Matrix N, Matrix Z) Auxiliary function used in the logistic sampling methodstatic Ret.pfqnNc
static Ret.pfqnNc
PFQN.pfqn_mmint2
(Matrix L, Matrix N, Matrix Z) static Ret.pfqnNc
PFQN.pfqn_mmint2_gausslegendre
(Matrix L, Matrix N, Matrix Z, Integer m) Compute the normalizing constant of a repairmen model using Gauss-Legendre integrationstatic Ret.pfqnNc
PFQN.pfqn_mmsample2
(Matrix L, Matrix N, Matrix Z, int samples) static double
PFQN.pfqn_mu_ms_gnaux
(int n, int m, int c, Matrix g) static Matrix
PFQN.pfqn_mushift
(Matrix mu, int k) Shifts a load-dependent scaling vector by one positionstatic Ret.pfqnMVA
static Ret.pfqnMVA
Mean Value Analysis (MVA) Algorithm for closed Product-Form Queueing Networks.static Ret.pfqnMVALD
PFQN.pfqn_mvald
(Matrix L, Matrix N, Matrix Z, Matrix mu) Mean Value Analysis (MVA) method for closed networks with load dependent service and stabilizationstatic Ret.pfqnMVALD
PFQN.pfqn_mvald
(Matrix L, Matrix N, Matrix Z, Matrix mu, boolean stabilize) Mean Value Analysis (MVA) method for closed networks with load dependent servicestatic Ret.pfqnMVA
Wrapper for pfqn_mvaldmx that adjusts utilizations to account for multiserversstatic Ret.pfqnMVALDMX
Mean Value Analysis (MVA) method for mixed queueing networks with load-dependent nodes.protected static Ret.pfqnMVALDMXEC
PFQN.pfqn_mvaldmx_ec
(Matrix lambda, Matrix D, Matrix mu) Auxiliary function used by pfqn_mvaldmx to compute the EC termsstatic Ret.pfqnMVA
General purpose script to handle mixed Query Networks with multiserver nodes.static Ret.pfqnMVA
Mean Value Analysis (MVA) method for open and mixed queueing networks with no multi-server nodes.static Ret.pfqnNcXQ
Main method to compute the normalizing constant of a load-independent modelstatic Ret.pfqnNcSanitize
PFQN.pfqn_nc_sanitize
(Matrix lambda, Matrix L, Matrix N, Matrix Z, double atol) Sanitizes product-form model parameters to avoid degeneraciesstatic Matrix
static Ret.pfqnNc
Main method to compute the normalizing constant of a load-dependent modelstatic double
static double
static Ret.pfqnNc
PFQN.pfqn_panacea
(Matrix L, Matrix N, Matrix Z) Compute the PANACEA approximationstatic Ret.pfqnNc
PFQN.pfqn_panacea
(Matrix L, Matrix N, Matrix Z, SolverOptions options) Compute the PANACEA approximationstatic double
PFQN.pfqn_pff_delay
(Matrix Z, Matrix n) Compute the product-form factor relatively to a Delay stationstatic Ret.pfqnNcXQ
PFQN.pfqn_propfair
(Matrix L, Matrix N, Matrix Z) static double
PFQN.pfqn_qzgblow
(Matrix L, double N, double Z, int i) Computes the lower Geometric Bound (GB) for the queue length of the given closed single-class queueing networksstatic double
PFQN.pfqn_qzgbup
(Matrix L, double N, double Z, int i) Computes the upper Geometric Bound (GB) for the queue length of the given closed single-class queueing networksstatic Ret.pfqnRd
static Ret.pfqnNc
PFQN.pfqn_recal
(Matrix L, Matrix N) RECAL method to compute the normalizing constant of a load-independent closed queueing network modelstatic Ret.pfqnNc
PFQN.pfqn_recal
(Matrix L, Matrix N, Matrix Z) RECAL method to compute the normalizing constant of a load-independent closed queueing network modelstatic Ret.pfqnNc
PFQN.pfqn_recal
(Matrix L, Matrix N, Matrix Z, Matrix m0) RECAL method to compute the normalizing constant of a load-independent closed queueing network modelstatic double
PFQN.pfqn_xia
(Matrix L, int N, Matrix s, SolverOptions options) static double
PFQN.pfqn_xzabalow
(Matrix L, double N, double Z) Computes the low ABA for the throughput of the given closed single-class queueing networksstatic double
PFQN.pfqn_xzabaup
(Matrix L, double N, double Z) Computes the upper ABA for the throughput of the given closed single-class queueing networksstatic double
PFQN.pfqn_xzgsblow
(Matrix L, double N, double Z) Computes the lower Geometric Square-Root Bound (GSB) for the throughput of the given closed single-class queueing networksstatic double
PFQN.pfqn_xzgsbup
(Matrix L, double N, double Z) Computes the upper Geometric Square-Root Bound (GSB) for the throughput of the given closed single-class queueing networksSN.snDeaggregateChainResults
(NetworkStruct sn, Matrix Lchain, Matrix ST, Matrix STchain, Matrix Vchain, Matrix alpha, Matrix Qchain, Matrix Uchain, Matrix Rchain, Matrix Tchain, Matrix Cchain, Matrix Xchain) Calculate class-based performance metrics for a queueing network based on performance measures of its chainsstatic Matrix
SN.snGetAvgArvRFromTput
(NetworkStruct sn, Matrix TN, Matrix TH) Calculates the average arrival rates at each station from the network throughputs.static NetworkStruct
SN.snRefreshVisits
(NetworkStruct sn, Matrix chains, Matrix rt, Matrix rtnodes) Reculate the visits to each nodestatic Ret.FJsortForks
FJ.sort_forks
(NetworkStruct sn, NetworkStruct nonfjstruct, Matrix fjforkmap, Matrix fjclassmap, Network nonfjmodel) Determines a directed acyclic graph of relationships among fork nodes.Modifier and TypeMethodDescriptionstatic Ret.mamMMAPMixtureFit
Fits a mixture of Markovian Arrival Processes (MMAPs) to match the given cross-moments.static Matrix
PFQN.pfqn_cdfun
(Matrix nvec, Map<Station, SerializableFunction<Matrix, Double>> cdscaling, List<Station> stations) Evaluate class-dependent (CD) scaling function -
Uses of Matrix in jline.io
Modifier and TypeFieldDescriptionRet.snGetDemandsChain.alpha
Ret.lossnErlangFP.blockProb
Ret.pfqnFnc.c
Ret.pfqnAMVA.C
Ret.pfqnAMVAMS.C
Ret.snDeaggregateChainResults.C
final Matrix
Ret.pfqnLeFpi.d
final Matrix
Ret.pfqnLeFpiZ.d
Ret.snGetDemands.D
Ret.snGetProductFormChainParams.D
Ret.snGetProductFormParams.D
Ret.snGetDemandsChain.Dchain
Ret.pfqnMVALDMXEC.E
Ret.pfqnMVALDMXEC.EC
Ret.pfqnMVALDMXEC.Eprime
Ret.npfqnNonexpApprox.eta
Ret.FJApprox.fjclassmap
Ret.FJApprox.fjforkmap
Ret.cacheGammaLp.gamma
Ret.npfqnNonexpApprox.gamma
Ret.pfqnNcSanitize.L
Ret.pfqnNcSanitize.lambda
Ret.snGetProductFormChainParams.lambda
Ret.snGetProductFormParams.lambda
Ret.pfqnComomrm.lGbasis
Ret.pfqnMVALDMXEC.Lo
Ret.lossnErlangFP.lossProb
Ret.pfqnFnc.mu
Ret.snGetProductFormChainParams.mu
Ret.snGetProductFormParams.mu
Ret.pfqnNcSanitize.N
Ret.snGetProductFormChainParams.N
Ret.snGetProductFormParams.N
Ret.snGetDemandsChain.Nchain
Ret.npfqnNonexpApprox.nservers
Ret.FJsortForks.outerForks
final Matrix
Ret.EventResult.outprob
final Matrix
Ret.EventResult.outrate
final Matrix
Ret.EventResult.outspace
final Matrix
Ret.pfqnCore.P
final Matrix
Ret.pfqnForwardMVA.P
Ret.pfqnLinearizerMSCore.P
Ret.pfqnLinearizerMSForwardMVA.P
Matrix[]
Ret.pfqnLinearizerMSEstimate.P_1
Ret.FJsortForks.parentForks
final Matrix
Ret.pfqnCore.PB
final Matrix
Ret.pfqnForwardMVA.PB
Ret.pfqnLinearizerMSCore.PB
Ret.pfqnLinearizerMSForwardMVA.PB
final Matrix
Ret.pfqnEstimate.PB_1
Ret.pfqnLinearizerMSEstimate.PB_1
Ret.pfqnMVALDMX.Pc
Ret.cacheMVA.pi
Ret.pfqnMVALD.pi
Ret.cacheMVA.pi0
Ret.cacheXiFp.pi0
Ret.cacheMVA.pij
Ret.cacheXiFp.pij
Ret.pfqnComomrmLd.prob
Ret.pfqnAMVA.Q
Ret.pfqnAMVAMS.Q
final Matrix
Ret.pfqnCore.Q
final Matrix
Ret.pfqnForwardMVA.Q
Ret.pfqnLinearizerCore.Q
Ret.pfqnLinearizerForwardMVA.Q
Ret.pfqnLinearizerMSCore.Q
Ret.pfqnLinearizerMSForwardMVA.Q
Ret.pfqnMVA.Q
Ret.pfqnMVALD.Q
Ret.pfqnMVALDMX.Q
Ret.pfqnNcXQ.Q
Ret.snDeaggregateChainResults.Q
Matrix[]
Ret.pfqnLinearizerEstimate.Q_1
Matrix[]
Ret.pfqnLinearizerMSEstimate.Q_1
Ret.lossnErlangFP.qLen
Ret.pfqnAMVA.R
Ret.pfqnAMVAMS.R
Ret.pfqnMVA.R
Ret.pfqnMVALD.R
Ret.pfqnMVALDMX.R
Ret.snDeaggregateChainResults.R
Ret.snGetDemandsChain.refstatchain
Ret.npfqnNonexpApprox.rho
Ret.snGetProductFormChainParams.S
Ret.snGetProductFormParams.S
Ret.npfqnNonexpApprox.scva
Ret.snGetDemandsChain.SCVchain
Ret.npfqnNonexpApprox.scvs
Ret.npfqnNonexpApprox.ST
Ret.snGetDemandsChain.STchain
Ret.pfqnAMVA.T
final Matrix
Ret.pfqnForwardMVA.T
Ret.pfqnLinearizerCore.T
Ret.pfqnLinearizerForwardMVA.T
Ret.pfqnLinearizerMSCore.T
Ret.pfqnLinearizerMSForwardMVA.T
Ret.snDeaggregateChainResults.T
final Matrix
Ret.pfqnEstimate.T_1
Ret.pfqnLinearizerEstimate.T_1
Ret.cacheMVA.u
final Matrix
Ret.pfqnLeFpi.u
final Matrix
Ret.pfqnLeFpiZ.u
Ret.pfqnAMVA.U
Ret.pfqnAMVAMS.U
Ret.pfqnMVA.U
Ret.pfqnMVALD.U
Ret.pfqnMVALDMX.U
Ret.snDeaggregateChainResults.U
Ret.snGetProductFormChainParams.V
Ret.snGetProductFormParams.V
Ret.snGetDemandsChain.Vchain
final Matrix
Ret.pfqnCore.W
final Matrix
Ret.pfqnForwardMVA.W
Ret.pfqnLinearizerCore.W
Ret.pfqnLinearizerForwardMVA.W
Ret.pfqnLinearizerMSCore.W
Ret.pfqnLinearizerMSForwardMVA.W
Ret.cacheMVA.x
Ret.pfqnAMVA.X
Ret.pfqnAMVAMS.X
final Matrix
Ret.pfqnCore.X
Ret.pfqnMVA.X
Ret.pfqnMVALD.X
Ret.pfqnMVALDMX.X
Ret.pfqnNcXQ.X
Ret.snDeaggregateChainResults.X
Ret.cacheRayInt.xi
Ret.cacheXiFp.xi
Ret.pfqnNcSanitize.Z
Ret.snGetDemands.Z
Ret.snGetProductFormChainParams.Z
Ret.snGetProductFormParams.Z
ModifierConstructorDescriptioncacheGammaLp
(Matrix gamma, int u, int n, int h) Constructor for initializing the cacheGammaLpReturn object.Constructor for initializing the cacheMVAReturn object.cacheRayInt
(double Z, double lZ, Matrix xi) Constructor for initializing the cacheRayIntReturn object.Constructor for initializing the cacheXiFpReturn object.EventResult
(Matrix outspace, Matrix outrate, Matrix outprob) FJApprox
(Network nonfjmodel, Matrix fjclassmap, Matrix fjforkmap, Map<Integer, Integer> fj_auxiliary_delays, Map<Integer, Integer> fanout) FJsortForks
(Matrix outerForks, Matrix parentForks) lossnErlangFP
(Matrix q, Matrix l, Matrix b, int n) npfqnNonexpApprox
(Matrix ST, Matrix gamma, Matrix nservers, Matrix rho, Matrix scva, Matrix scvs, Matrix eta) pfqnComomrm
(double lG, Matrix lGbasis) pfqnComomrmLd
(double GN, double lG, Matrix prob) pfqnEstimate
(MatrixCell Q_1, MatrixCell P_1, Matrix PB_1, Matrix T_1) pfqnLeFpiZ
(Matrix u, double v, Matrix d) pfqnLinearizerCore
(Matrix Q, Matrix W, Matrix T, int iter) pfqnLinearizerEstimate
(Matrix[] Q_1, Matrix T_1) pfqnLinearizerForwardMVA
(Matrix Q, Matrix W, Matrix T) pfqnLinearizerMSEstimate
(Matrix[] Q_1, Matrix[] P_1, Matrix PB_1) pfqnMVALD
(Matrix XN, Matrix QN, Matrix UN, Matrix RN, List<Double> lG, boolean isNumStable, Matrix pi) pfqnMVALDMXEC
(Matrix EC, Matrix E, Matrix Eprime, Matrix Lo) pfqnNcSanitize
(Matrix lambda, Matrix L, Matrix N, Matrix Z, double lGremaind) snGetDemandsChain
(Matrix dchain, Matrix sTchain, Matrix vchain, Matrix alpha, Matrix nchain, Matrix sCVchain, Matrix refstatchain) -
Uses of Matrix in jline.lang
Modifier and TypeClassDescriptionclass
Class representing a probabilistic routing matrixModifier and TypeFieldDescriptionMatrix[][]
NodeParam.accost
NodeParam.actualhitprob
NodeParam.actualmissprob
NetworkStruct.cap
Network.routingMatrixReturn.chains
NetworkStruct.chains
NetworkStruct.classcap
NetworkStruct.classprio
protected Matrix
Chain.completes
NetworkStruct.connmatrix
NetworkStruct.csmask
NodeParam.fireweight
NodeParam.firingphases
NodeParam.firingprio
NetworkStruct.fj
NodeParam.hitclass
NetworkStruct.isslc
NetworkStruct.isstatedep
NetworkStruct.isstateful
NetworkStruct.isstation
NodeParam.itemcap
Network.routingMatrixReturn.linksmat
NetworkStruct.lldscaling
NodeParam.missclass
protected Matrix
Chain.njobs
NetworkStruct.njobs
NodeParam.nmodeservers
NetworkStruct.nodeToStateful
NetworkStruct.nodeToStation
NetworkStruct.nservers
NetworkStruct.nvars
NetworkStruct.phases
NetworkStruct.phaseshift
NetworkStruct.phasessz
Env.probEnv
Env.probOrig
NetworkStruct.rates
NetworkStruct.refclass
NetworkStruct.refstat
Network.routingMatrixReturn.rt
NetworkStruct.rt
Network.routingMatrixReturn.rtnodes
NetworkStruct.rtnodes
NetworkStruct.schedparam
NetworkStruct.scv
protected Matrix
Event.state
NetworkStruct.statefulToNode
NetworkStruct.stationToNode
NetworkStruct.stationToStateful
protected Matrix
Chain.visits
Modifier and TypeFieldDescriptionNetworkStruct.cdscaling
NodeParam.enabling
NodeParam.firing
NetworkStruct.inchain
NodeParam.inhibiting
NetworkStruct.mu
NetworkStruct.nodevisits
NodeParam.outlinks
NetworkStruct.phi
NetworkStruct.pie
Event.probFun
Event.probFun
Network.routingMatrixReturn.rtNodesByClass
Network.routingMatrixReturn.rtNodesByStation
NetworkStruct.rtorig
NetworkStruct.space
NetworkStruct.state
NetworkStruct.stateprior
NetworkStruct.visits
NodeParam.weights
NodeParam.withMemory
Modifier and TypeMethodDescriptionNetwork.getClassSwitchingMask()
Network.getConnectionMatrix()
Network.getCsMatrix()
Network.getDemandsChain()
Network.getForkJoins()
Network.getLimitedLoadDependence()
Network.getNumberOfJobs()
Network.getReferenceClasses()
Network.getReferenceStations()
Event.getState()
Network.getStationServers()
Modifier and TypeMethodDescriptionNetwork.getLimitedClassDependence()
Network.getLinkedRoutingMatrix()
Event.getProbFun()
Event.getProbFun()
Modifier and TypeMethodDescriptionstatic Network
Network.cyclic
(Matrix N, Matrix D, SchedStrategy[] strategy, Matrix S) static Network
Network.cyclicFcfs
(Matrix N, Matrix D, Matrix S) static Network
Network.cyclicFcfsInf
(Matrix N, Matrix D, Matrix Z) static Network
Network.cyclicFcfsInf
(Matrix N, Matrix D, Matrix Z, Matrix S) static Network
static Network
Network.cyclicPsInf
(Matrix N, Matrix D, Matrix S) static Network
Network.cyclicPsInf
(Matrix N, Matrix D, Matrix Z, Matrix S) Network.getRoutingMatrix
(Matrix arvRates, int returnVal) void
Network.initFromAvgQLen
(Matrix AvgQLen) void
Network.initFromMarginal
(Matrix n) void
Network.initFromMarginalAndRunning
(Matrix n, Matrix s) void
Network.initFromMarginalAndStarted
(Matrix n, Matrix s) void
Network.refreshRoutingMatrix
(Matrix rates) void
void
void
Network.setConnectionMatrix
(Matrix connection) void
Network.setCsMatrix
(Matrix csMatrix) void
double
Network.sub_jsq
(int ind, int jnd, int r, int s, Matrix linksmat, Map<Node, Matrix> state_before, Map<Node, Matrix> state_after) double
Network.sub_rr_wrr
(int ind, int jnd, int r, int s, Matrix linksmat, Map<Node, Matrix> state_before, Map<Node, Matrix> state_after) static Network
Network.tandem
(Matrix lambda, Matrix D, SchedStrategy[] strategy, Matrix S) static Network
Network.tandemFcfs
(Matrix lambda, Matrix D, Matrix S) static Network
Network.tandemFcfsInf
(Matrix lambda, Matrix D) static Network
Network.tandemFcfsInf
(Matrix lambda, Matrix D, Matrix Z) static Network
Network.tandemFcfsInf
(Matrix lambda, Matrix D, Matrix Z, Matrix S) static Network
static Network
Network.tandemPsInf
(Matrix lambda, Matrix D) static Network
Network.tandemPsInf
(Matrix lambda, Matrix D, Matrix Z) static Network
Network.tandemPsInf
(Matrix lambda, Matrix D, Matrix Z, Matrix S) Modifier and TypeMethodDescriptiondouble
double
void
Event.setProbFun
(SerializableFunction<Pair<Map<Node, Matrix>, Map<Node, Matrix>>, Double> probFun) void
Event.setProbFun
(SerializableFunction<Pair<Map<Node, Matrix>, Map<Node, Matrix>>, Double> probFun) double
Network.sub_jsq
(int ind, int jnd, int r, int s, Matrix linksmat, Map<Node, Matrix> state_before, Map<Node, Matrix> state_after) double
Network.sub_rr_wrr
(int ind, int jnd, int r, int s, Matrix linksmat, Map<Node, Matrix> state_before, Map<Node, Matrix> state_after) ModifierConstructorDescriptionClassSwitchMatrix
(Matrix matrix) Event
(EventType event, int nodeIdx, int jobclassIdx, double prob, Matrix state, double t, double job) Event
(EventType event, int nodeIdx, int jobclassIdx, SerializableFunction<Pair<Map<Node, Matrix>, Map<Node, Matrix>>, Double> probFun, Matrix state, double t, double job) routingMatrixReturn
(Matrix rt, Matrix rtnodes, Matrix linksmat, Matrix chains, Map<JobClass, Map<JobClass, Matrix>> rtNodesByClass, Map<Node, Map<Node, Matrix>> rtNodesByStation) ModifierConstructorDescriptionEvent
(EventType event, int nodeIdx, int jobclassIdx, SerializableFunction<Pair<Map<Node, Matrix>, Map<Node, Matrix>>, Double> probFun, Matrix state, double t, double job) Event
(EventType event, int nodeIdx, int jobclassIdx, SerializableFunction<Pair<Map<Node, Matrix>, Map<Node, Matrix>>, Double> probFun, Matrix state, double t, double job) routingMatrixReturn
(Matrix rt, Matrix rtnodes, Matrix linksmat, Matrix chains, Map<JobClass, Map<JobClass, Matrix>> rtNodesByClass, Map<Node, Map<Node, Matrix>> rtNodesByStation) -
Uses of Matrix in jline.lang.layered
Modifier and TypeFieldDescriptionLayeredNetworkStruct.actposttype
LayeredNetworkStruct.actpretype
protected Matrix
Activity.asyncCallMeans
LayeredNetworkStruct.callpair
LayeredNetworkStruct.conntasks
LayeredNetworkStruct.graph
LayeredNetworkStruct.isasynccaller
LayeredNetworkStruct.iscache
LayeredNetworkStruct.iscaller
LayeredNetworkStruct.isref
LayeredNetworkStruct.issynccaller
LayeredNetworkStruct.mult
LayeredNetworkStruct.nitems
LayeredNetworkStruct.parent
protected Matrix
ActivityPrecedence.postParams
protected Matrix
ActivityPrecedence.preParams
LayeredNetworkStruct.repl
LayeredNetworkStruct.replacement
LayeredNetworkStruct.replygraph
LayeredNetworkStruct.schedid
protected Matrix
Activity.scheduling
protected Matrix
Entry.scheduling
protected Matrix
Activity.syncCallMeans
LayeredNetworkStruct.taskgraph
LayeredNetworkStruct.type
Modifier and TypeMethodDescriptionstatic ActivityPrecedence
Creates an ActivityPrecedence object representing an AND-fork relationship with a specified fanout matrix.static ActivityPrecedence
Creates an ActivityPrecedence object representing an AND-join relationship with a specified quorum matrix.static ActivityPrecedence
Creates an ActivityPrecedence object representing a loop relationship.static ActivityPrecedence
Creates an ActivityPrecedence object representing a loop relationship.static ActivityPrecedence
/** Creates an ActivityPrecedence object representing an OR-fork relationship with a specified probability matrix.static ActivityPrecedence
Creates an ActivityPrecedence object representing an XOR relationship.ModifierConstructorDescriptionActivityPrecedence
(boolean isActivity, List<Activity> preActs, List<Activity> postActs, String preType, String postType, Matrix preParams) Constructs an ActivityPrecedence using activity objects instead of strings, without postParams.ActivityPrecedence
(boolean isActivity, List<Activity> preActs, List<Activity> postActs, String preType, String postType, Matrix preParams, Matrix postParams) Constructs an ActivityPrecedence using activity objects instead of strings, with all parameters.ActivityPrecedence
(List<String> preActs, List<String> postActs, String preType, String postType, Matrix preParams) Constructs an ActivityPrecedence with the specified parameters, without postParams.ActivityPrecedence
(List<String> preActs, List<String> postActs, String preType, String postType, Matrix preParams, Matrix postParams) Constructs an ActivityPrecedence with the specified parameters. -
Uses of Matrix in jline.lang.nodes
Modifier and TypeFieldDescriptionMatrix[][]
Cache.accessProb
Transition.firingPriorities
Transition.firingWeights
protected Matrix
Station.lldScaling
Modifier and TypeFieldDescriptionTransition.enablingConditions
Transition.firingOutcomes
Transition.inhibitingConditions
protected SerializableFunction<Matrix,
Double> Station.lcdScaling
Modifier and TypeMethodDescriptionCache.getAccessProb
(int i, int j) Matrix[]
Cache.getGraph()
Cache.getHitClass()
For an incoming job of class r, HITCLASS[r] is the new class of that job after a hitCache.getHitRatio()
Cache.getItemLevelCap()
Station.getLimitedLoadDependence()
Cache.getMissClass()
For an incoming job of class r, MISSCLASS[r] is the new class of that job after a missCache.getMissRatio()
Transition.getNumberOfModeServers()
StatefulNode.getState()
StatefulNode.getStatePrior()
Modifier and TypeMethodDescriptionvoid
Cache.setAccessProb
(Matrix[][] R) void
Station.setLimitedLoadDependence
(Matrix alpha) void
Queue.setLoadDependence
(Matrix alpha) void
Cache.setResultHitProb
(Matrix actualHitProb) void
Cache.setResultMissProb
(Matrix actualMissProb) void
void
StatefulNode.setStatePrior
(Matrix prior) Modifier and TypeMethodDescriptionvoid
Queue.setClassDependence
(SerializableFunction<Matrix, Double> beta) void
Station.setLimitedClassDependence
(SerializableFunction<Matrix, Double> gamma) ModifierConstructorDescriptionCache
(Network model, String name, int nitems, int itemLevelCap, ReplacementStrategy replPolicy, Matrix[] graph) Cache
(Network model, String name, int nitems, Matrix itemLevelCap, ReplacementStrategy replPolicy) Cache
(Network model, String name, int nitems, Matrix itemLevelCap, ReplacementStrategy replPolicy, Matrix[] graph) ClassSwitch
(Network model, String name, Matrix csFun) -
Uses of Matrix in jline.lang.processes
Modifier and TypeMethodDescriptionMAP.D
(int i) Marked.D
(int i) Marked.D
(int i, int k) Markovian.D
(int i) MMPP2.D
(int i) MarkovModulated.evalACFT
(int[] lags, double timescale) MMPP2.evalACFT
(int[] lags, double timescale) Zipf.evalPMF()
Evaluates the probability mass function at tMarked.getD1k
(int k) Markovian.getEmbedded()
MMPP2.getEmbedded()
Markovian.getEmbeddedProb()
MMPP2.getEmbeddedProb()
APH.getInitProb()
Markovian.getInitProb()
PH.getInitProb()
Coxian.getMu()
Markovian.getMu()
Coxian.getPhi()
Markovian.getPhi()
Markovian.getSubgenerator()
PH.getSubgenerator()
ModifierConstructorDescriptionDiscreteSampler
(Matrix p, Matrix x) Constructs a discrete distribution from a finite probability vector p at the points specified in vector x -
Uses of Matrix in jline.lang.sections
Modifier and TypeFieldDescriptionCacheClassSwitcher.actualHitProb
CacheClassSwitcher.actualMissProb
CacheClassSwitcher.hitClass
CacheClassSwitcher.missClass
ClassSwitcher.CSFunInput.state
ClassSwitcher.CSFunInput.statedep
Modifier and TypeMethodDescriptiondouble
CacheClassSwitcher.simpleHitMiss
(int r, int s, Matrix state) double
CacheClassSwitcher.simpleHitMiss
(int r, int s, Matrix state, Matrix statep) void
StatelessClassSwitcher.updateClassSwitch
(Matrix csMatrix) ModifierConstructorDescriptionCacheClassSwitcher
(List<JobClass> jobClasses, int items, Matrix capacity) CacheClassSwitcher
(List<JobClass> jobClasses, int items, Matrix capacity, int levels) CSFunInput
(int r, int s, Matrix state, Matrix statedep) StatelessClassSwitcher
(List<JobClass> jobClasses, Matrix csMatrix) -
Uses of Matrix in jline.lang.state
Modifier and TypeFieldDescriptionState.StateSpaceGeneratorResult.Adj
final Matrix
EventCacheKey.inspace
State.StateMarginalStatistics.ni
State.StateMarginalStatistics.nir
State.AfterEventResult.outhash
State.AfterEventResult.outprob
State.AfterEventResult.outrate
State.StateMarginalStatistics.sir
State.StateSpaceGeneratorResult.SS
State.StateSpaceGeneratorResult.SSh
Modifier and TypeFieldDescriptionfinal Map<StatefulNode,
Matrix> State.initialState
State.StateMarginalStatistics.kir
final Map<StatefulNode,
Matrix> State.priorInitialState
State.StateSpaceGeneratorResult.QNC.space
Modifier and TypeMethodDescriptionstatic Matrix
State.fromMarginal
(NetworkStruct sn, int ind, Matrix n) static Matrix
State.fromMarginalAndRunning
(Network sn, int ind, Matrix n, Matrix s) static Matrix
State.fromMarginalAndRunning
(NetworkStruct sn, int ind, Matrix n, Matrix s) static Matrix
State.fromMarginalAndRunning
(NetworkStruct sn, int ind, Matrix n, Matrix s, boolean optionsForce) static Matrix
State.fromMarginalAndStarted
(Network network, int ind, Matrix n, Matrix s) static Matrix
State.fromMarginalAndStarted
(NetworkStruct sn, int ind, Matrix n, Matrix s) static Matrix
State.fromMarginalAndStarted
(NetworkStruct sn, int ind, Matrix n, Matrix s, Boolean optionsForce) static Matrix
State.fromMarginalBounds
(NetworkStruct sn, int ind, Matrix ub, double cap, SolverOptions options) static Matrix
State.spaceClosedMulti
(int M, Matrix N) static Matrix
State.spaceClosedMultiCS
(int M, Matrix N, Matrix chains) Modifier and TypeMethodDescriptionstatic Ret.EventResult
State.afterEvent
(NetworkStruct sn, int ind, Matrix inspace, EventType event, int jobClass, boolean isSimulation) static Ret.EventResult
State.afterEvent
(NetworkStruct sn, int ind, Matrix inspace, EventType event, int jobClass, boolean isSimulation, EventCache eventCache) static int
static Matrix
State.fromMarginal
(NetworkStruct sn, int ind, Matrix n) static Matrix
State.fromMarginalAndRunning
(Network sn, int ind, Matrix n, Matrix s) static Matrix
State.fromMarginalAndRunning
(NetworkStruct sn, int ind, Matrix n, Matrix s) static Matrix
State.fromMarginalAndRunning
(NetworkStruct sn, int ind, Matrix n, Matrix s, boolean optionsForce) static Matrix
State.fromMarginalAndStarted
(Network network, int ind, Matrix n, Matrix s) static Matrix
State.fromMarginalAndStarted
(NetworkStruct sn, int ind, Matrix n, Matrix s) static Matrix
State.fromMarginalAndStarted
(NetworkStruct sn, int ind, Matrix n, Matrix s, Boolean optionsForce) static Matrix
State.fromMarginalBounds
(NetworkStruct sn, int ind, Matrix ub, double cap, SolverOptions options) static boolean
static boolean
static boolean
State.isValid
(NetworkStruct sn, Matrix n, Matrix s) static Matrix
State.spaceClosedMulti
(int M, Matrix N) static Matrix
State.spaceClosedMultiCS
(int M, Matrix N, Matrix chains) State.spaceGeneratorNodes
(NetworkStruct sn, Matrix cutoff, SolverOptions options) State.toMarginal
(NetworkStruct sn, int ind, Matrix state_i, Matrix phasesz, Matrix phaseshift, Matrix space_buf, Matrix space_srv, Matrix space_var) State.toMarginalAggr
(NetworkStruct sn, int ind, Matrix state_i, Matrix K, Matrix Ks, Matrix space_buf, Matrix space_srv, Matrix space_var) ModifierConstructorDescriptionAfterEventResult
(Matrix outhash, Matrix outrate, Matrix outprob) EventCacheKey
(int ind, Matrix inspace, EventType event, int jobClass, boolean isSimulation) spaceGeneratorNodesResult
(Map<Station, Matrix> nodeStateSpace, NetworkStruct sn, Matrix capacityc) StateSpaceGeneratorResult
(Matrix ss, Matrix sSh, NetworkStruct sn) ModifierConstructorDescriptionspaceGeneratorNodesResult
(Map<Station, Matrix> nodeStateSpace, NetworkStruct sn, Matrix capacityc) State
(Map<StatefulNode, Matrix> initialState, Map<StatefulNode, Matrix> priorInitialState) -
Uses of Matrix in jline.lib.thirdparty
Modifier and TypeMethodDescriptionstatic Matrix
BUTOOLS.MomsFromFactorialMoms
(Matrix fm) static Matrix
static Matrix
SMCSolver.QBD_NI_Sylvest
(Matrix A, Matrix B, Matrix C, Matrix D) static Matrix
BUTOOLS.SimilarityMatrixForVectors
(Matrix vecA, Matrix vecB) static Matrix
Modifier and TypeMethodDescriptionBUTOOLS.FluidFundamentalMatrices
(Matrix Fpp, Matrix Fpm, Matrix Fmp, Matrix Fmm, Double precision_, Integer maxNumIt_, String method_) BUTOOLS.MMAPPH1FCFS
(MatrixCell D, Map<Integer, Matrix> sigma, Map<Integer, Matrix> S, Integer numOfQLMoms, Integer numOfQLProbs, Integer numOfSTMoms, Matrix stDistr, Boolean stDistrME, Boolean stDistrPH, Double prec, Matrix classes_) BUTOOLS.MMAPPH1NPPR
(MatrixCell D, MatrixCell sigma, MatrixCell S, Integer numOfQLMoms, Integer numOfQLProbs, Integer numOfSTMoms, Matrix stCdfPoints, Double prec, Integer erlMaxOrder_, Matrix classes_) SMCSolver.QBD_CR
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_) SMCSolver.QBD_FI
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Matrix StartValue_, Integer RAPComp_) SMCSolver.QBD_IS
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_) SMCSolver.QBD_LR
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_) SMCSolver.QBD_NI
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_) BUTOOLS.QBDFundamentalMatrices
(Matrix B, Matrix L, Matrix F, Double precision_, Integer maxNumIt_, String method_, Integer Verbose_) Modifier and TypeMethodDescriptionBUTOOLS.FluidFundamentalMatrices
(Matrix Fpp, Matrix Fpm, Matrix Fmp, Matrix Fmm, Double precision_, Integer maxNumIt_, String method_) BUTOOLS.MMAPPH1FCFS
(MatrixCell D, Map<Integer, Matrix> sigma, Map<Integer, Matrix> S, Integer numOfQLMoms, Integer numOfQLProbs, Integer numOfSTMoms, Matrix stDistr, Boolean stDistrME, Boolean stDistrPH, Double prec, Matrix classes_) BUTOOLS.MMAPPH1NPPR
(MatrixCell D, MatrixCell sigma, MatrixCell S, Integer numOfQLMoms, Integer numOfQLProbs, Integer numOfSTMoms, Matrix stCdfPoints, Double prec, Integer erlMaxOrder_, Matrix classes_) static Matrix
BUTOOLS.MomsFromFactorialMoms
(Matrix fm) static Matrix
static double
SMCSolver.QBD_CAUDAL
(Matrix A0, Matrix A1, Matrix A2) static double
SMCSolver.QBD_CAUDAL
(Matrix A0, Matrix A1, Matrix A2, Boolean Dual) SMCSolver.QBD_CR
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_) SMCSolver.QBD_FI
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Matrix StartValue_, Integer RAPComp_) SMCSolver.QBD_IS
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_) SMCSolver.QBD_LR
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_) SMCSolver.QBD_NI
(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_) static Matrix
SMCSolver.QBD_NI_Sylvest
(Matrix A, Matrix B, Matrix C, Matrix D) static void
SMCSolver.QBD_ParsePara
(Matrix A0, Matrix A1, Matrix A2) BUTOOLS.QBDFundamentalMatrices
(Matrix B, Matrix L, Matrix F, Double precision_, Integer maxNumIt_, String method_, Integer Verbose_) static Matrix
BUTOOLS.SimilarityMatrixForVectors
(Matrix vecA, Matrix vecB) static Matrix
-
Uses of Matrix in jline.solvers
Modifier and TypeFieldDescriptionSolverResult.AN
SolverResult.CN
Matrix[][]
SolverResult.CNt
SolverOptions.init_sol
LayeredSolverResult.PN
SolverResult.QN
Matrix[][]
SolverResult.QNt
SolverResult.RN
Matrix[][]
SolverResult.RNt
LayeredSolverResult.SN
SolverResult.t
SolverResult.TN
Matrix[][]
SolverResult.TNt
SolverResult.UN
Matrix[][]
SolverResult.UNt
SolverResult.WN
SolverResult.XN
Matrix[][]
SolverResult.XNt
Modifier and TypeMethodDescriptionfinal Matrix
NetworkSolver.getAvgArvR()
final Matrix
NetworkSolver.getAvgArvRChain()
final Matrix
NetworkSolver.getAvgNodeArvRChain()
final Matrix
NetworkSolver.getAvgNodeQLenChain()
final Matrix
NetworkSolver.getAvgNodeRespTChain()
final Matrix
NetworkSolver.getAvgNodeTputChain()
final Matrix
NetworkSolver.getAvgNodeUtilChain()
final Matrix
NetworkSolver.getAvgQLen()
final Matrix
NetworkSolver.getAvgQLenChain()
final Matrix
NetworkSolver.getAvgResidT()
final Matrix
NetworkSolver.getAvgRespT()
final Matrix
NetworkSolver.getAvgRespTChain()
final Matrix
NetworkSolver.getAvgSysRespT()
final Matrix
NetworkSolver.getAvgSysTput()
final Matrix
NetworkSolver.getAvgTput()
final Matrix
NetworkSolver.getAvgTputChain()
final Matrix
NetworkSolver.getAvgUtil()
final Matrix
NetworkSolver.getAvgUtilChain()
final Matrix
NetworkSolver.getAvgWaitT()
AvgTable.toMatrix()
Modifier and TypeMethodDescriptionvoid
NetworkSolver.setAvgResults
(Matrix Q, Matrix U, Matrix R, Matrix T, Matrix A, Matrix W, Matrix C, Matrix X, double runtime, String method, int iter) final void
NetworkSolver.setTranAvgResults
(Matrix[][] Qt, Matrix[][] Ut, Matrix[][] Rt, Matrix[][] Tt, Matrix[][] Ct, Matrix[][] Xt, double runtimet) -
Uses of Matrix in jline.solvers.ctmc
Modifier and TypeFieldDescriptionSolverCTMC.AnalyzerResult.CN
CTMCResult.infGen
SolverCTMC.generatorResult.infGen
SolverCTMC.symbolicResult.infGen
SolverCTMC.AnalyzerResult.InfGen
CTMCResult.Prob.joint
CTMCResult.Prob.marginal
SolverCTMC.StochCompResult.Q11
SolverCTMC.StochCompResult.Q12
SolverCTMC.StochCompResult.Q21
SolverCTMC.StochCompResult.Q22
SolverCTMC.AnalyzerResult.QN
SolverCTMC.AnalyzerResult.RN
SolverCTMC.StochCompResult.S
CTMCResult.solverSpecific
CTMCResult.space
CTMCResult.spaceAggr
SolverCTMC.StateSpace.stateSpace
SolverCTMC.symbolicResult.stateSpace
protected Matrix
SolverCTMCResult.stateSpace
SolverCTMC.AnalyzerResult.StateSpace
SolverCTMC.AnalyzerResult.StateSpaceAggr
SolverCTMC.AnalyzerResult.TN
SolverCTMC.AnalyzerResult.UN
SolverCTMC.AnalyzerResult.XN
Modifier and TypeFieldDescriptionCTMCResult.eventFilt
SolverCTMC.generatorResult.eventFilt
SolverCTMC.symbolicResult.eventFilt
SolverCTMC.AnalyzerResult.EventFiltration
SolverCTMC.StateSpace.localStateSpace
CTMCResult.nodeSpace
SolverCTMC.symbolicResult.nodeStateSpace
CTMCResult.AVG.Q
CTMCResult.AVG.T
CTMCResult.AVG.U
Modifier and TypeMethodDescriptionSolverCTMC.SolverCtmcJointResult.getPnir()
SolverCTMCResult.getQ()
SolverCTMC.CtmcSsgResult.getStateSpace()
SolverCTMCResult.getStateSpace()
SolverCTMC.CtmcSsgResult.getStateSpaceAggr()
SolverCTMCResult.getStateSpaceAggr()
SolverCTMC.CtmcSsgResult.getStateSpaceHashed()
Modifier and TypeMethodDescriptionvoid
SolverCTMC.printInfGen
(Matrix Q, Matrix SS) static double[][][]
SolverCTMC.removeRows
(double[][][] array, Matrix rowsToRemove) void
SolverCTMC.setAvgResults
(Matrix Q, Matrix U, Matrix R, Matrix T, Matrix A, Matrix W, Matrix C, Matrix X, double runtime, String method, int iter) ModifierConstructorDescriptionAnalyzerResult
(Matrix QN, Matrix UN, Matrix RN, Matrix TN, Matrix CN, Matrix XN, Matrix InfGen, Matrix StateSpace, Matrix StateSpaceAggr, Map<Integer, Matrix> EventFiltration, double runtime, String fname, NetworkStruct sncopy) CtmcSsgResult
(Matrix stateSpace, Matrix stateSpaceAggr, Matrix stateSpaceHashed, Map<Station, Matrix> nodeStateSpace, NetworkStruct sn) SolverCtmcJointResult
(Matrix pnir, double runtime, String fname) SolverCTMCResult
(Matrix q, Matrix stateSpace, Matrix stateSpaceAggr, Map<Integer, Matrix> dfilt, double[][][] arvRates, double[][][] depRates, NetworkStruct sn) StateSpace
(Matrix stateSpace, Map<Integer, Matrix> localStateSpace) symbolicResult
(Matrix infGen, Map<Integer, Matrix> eventFilt, Map<Integer, Sync> syncInfo, Matrix stateSpace, Map<Integer, Matrix> nodeStateSpace) ModifierConstructorDescriptionAnalyzerResult
(Matrix QN, Matrix UN, Matrix RN, Matrix TN, Matrix CN, Matrix XN, Matrix InfGen, Matrix StateSpace, Matrix StateSpaceAggr, Map<Integer, Matrix> EventFiltration, double runtime, String fname, NetworkStruct sncopy) CtmcSsgResult
(Matrix stateSpace, Matrix stateSpaceAggr, Matrix stateSpaceHashed, Map<Station, Matrix> nodeStateSpace, NetworkStruct sn) SolverCTMCResult
(Matrix q, Matrix stateSpace, Matrix stateSpaceAggr, Map<Integer, Matrix> dfilt, double[][][] arvRates, double[][][] depRates, NetworkStruct sn) StateSpace
(Matrix stateSpace, Map<Integer, Matrix> localStateSpace) symbolicResult
(Matrix infGen, Map<Integer, Matrix> eventFilt, Map<Integer, Sync> syncInfo, Matrix stateSpace, Map<Integer, Matrix> nodeStateSpace) -
Uses of Matrix in jline.solvers.fluid
Modifier and TypeFieldDescriptionMatrix[][]
SolverFluidResult.distribC
SolverFluidResult.odeStateVec
-
Uses of Matrix in jline.solvers.fluid.analyzers
Modifier and TypeFieldDescriptionClosingAndStateDepMethodsAnalyzer.xvec_it
MatrixMethodAnalyzer.xvec_it
ClosingAndStateDepMethodsAnalyzer.xvec_t
MatrixMethodAnalyzer.xvec_t
Modifier and TypeMethodDescriptionClosingAndStateDepMethodsAnalyzer.getXVecIt()
MatrixMethodAnalyzer.getXVecIt()
MethodAnalyzer.getXVecIt()
Modifier and TypeMethodDescriptionboolean
ClosingAndStateDepMethodsAnalyzer.detectStiffnessUsingOstrowski
(NetworkStruct sn, Matrix rate) -
Uses of Matrix in jline.solvers.fluid.odes
Modifier and TypeFieldDescriptionMethodStepHandler.tVec
TransientDataHandler.tVec
MethodStepHandler.xVec
TransientDataHandler.xVec
ModifierConstructorDescriptionClosingAndStateDepMethodsODE
(NetworkStruct sn, Map<Station, Map<JobClass, Matrix>> mu, Map<Station, Map<JobClass, Matrix>> phi, Map<Station, Map<JobClass, MatrixCell>> proc, Matrix rt, Matrix S, SolverOptions options) ClosingAndStateDepMethodsODE
(NetworkStruct sn, Map<Station, Map<JobClass, Matrix>> mu, Map<Station, Map<JobClass, Matrix>> phi, Map<Station, Map<JobClass, MatrixCell>> proc, Matrix rt, Matrix S, SolverOptions options, int numDimensions) MatrixMethodODE
(Matrix W, Matrix SQ, Matrix S, Matrix Qa, Matrix ALambda, int numDimensions, NetworkStruct sn, List<Double> pStarValues) ModifierConstructorDescriptionClosingAndStateDepMethodsODE
(NetworkStruct sn, Map<Station, Map<JobClass, Matrix>> mu, Map<Station, Map<JobClass, Matrix>> phi, Map<Station, Map<JobClass, MatrixCell>> proc, Matrix rt, Matrix S, SolverOptions options) ClosingAndStateDepMethodsODE
(NetworkStruct sn, Map<Station, Map<JobClass, Matrix>> mu, Map<Station, Map<JobClass, Matrix>> phi, Map<Station, Map<JobClass, MatrixCell>> proc, Matrix rt, Matrix S, SolverOptions options, int numDimensions) -
Uses of Matrix in jline.solvers.fluid.smoothing
Modifier and TypeMethodDescriptionorg.apache.commons.math3.optim.PointValuePair
PStarSearcher.findPStarValues
(Network model, Matrix targetQueueLengths) ModifierConstructorDescriptionCMAESObjectiveFunction
(Matrix targetQueueLengths, Network model, boolean stiff) PStarOptimisationFunction
(Matrix QNSSA, Network model, boolean stiff) -
Uses of Matrix in jline.solvers.jmt
Modifier and TypeMethodDescriptionSolverJMT.getCdfRespT()
SolverJMT.getTranCdfPassT()
SolverJMT.getTranCdfRespT()
-
Uses of Matrix in jline.solvers.ln
Modifier and TypeFieldDescriptionSolverLN.arvproc_classes_updmap
SolverLN.call_classes_updmap
SolverLN.callresidt
SolverLN.ilscaling
SolverLN.njobs
SolverLN.njobsorig
SolverLN.ptaskcallers
SolverLN.route_prob_updmap
SolverLN.servt
SolverLN.servt_classes_updmap
SolverLN.servtmatrix
SolverLN.thinkt
SolverLN.thinkt_classes_updmap
SolverLN.tput
SolverLN.unique_route_prob_updmap
SolverLN.util
Modifier and TypeMethodDescriptionSolverLN.getArvproc_classes_updmap()
SolverLN.getCall_classes_updmap()
SolverLN.getEntryServiceMatrix()
SolverLN.getEntryServiceMatrixRecursion
(LayeredNetworkStruct lqn, int aidx, int eidx, Matrix U) SolverLN.getRoute_prob_updmap()
SolverLN.getServt_classes_updmap()
SolverLN.getThinkt_classes_updmap()
SolverLN.integerMapToMatrix
(Map<Integer, List<Integer[]>> cell) Modifier and TypeMethodDescriptionSolverLN.getEntryServiceMatrixRecursion
(LayeredNetworkStruct lqn, int aidx, int eidx, Matrix U) -
Uses of Matrix in jline.solvers.mam
-
Uses of Matrix in jline.solvers.mva
-
Uses of Matrix in jline.solvers.mva.handlers
Modifier and TypeMethodDescriptionAMVALDHandler.solver_amvald_forward
(List<Matrix> gamma, Matrix tau, Matrix Qchain_in, Matrix Xchain_in, Matrix Uchain_in, Matrix STchain_in, Matrix Vchain_in, Matrix Nchain_in, Matrix SCVchain_in, double Nt, double delta, Matrix deltaclass, List<Integer> ocl, List<Integer> ccl, List<Integer> nnzclasses, Map<Integer, List<Integer>> nnzclasses_eprio, Map<Integer, List<Integer>> nnzclasses_hprio, Map<Integer, List<Integer>> nnzclasses_ehprio, NetworkStruct sn, SolverOptions options) AMVALDHandler.solver_amvald_forward
(List<Matrix> gamma, Matrix tau, Matrix Qchain_in, Matrix Xchain_in, Matrix Uchain_in, Matrix STchain_in, Matrix Vchain_in, Matrix Nchain_in, Matrix SCVchain_in, double Nt, double delta, Matrix deltaclass, List<Integer> ocl, List<Integer> ccl, List<Integer> nnzclasses, Map<Integer, List<Integer>> nnzclasses_eprio, Map<Integer, List<Integer>> nnzclasses_hprio, Map<Integer, List<Integer>> nnzclasses_ehprio, NetworkStruct sn, SolverOptions options) Modifier and TypeMethodDescriptionstatic double
QNAHandler.qna_superpos
(Matrix lambda, Matrix a2) AMVALDHandler.solver_amvald_forward
(List<Matrix> gamma, Matrix tau, Matrix Qchain_in, Matrix Xchain_in, Matrix Uchain_in, Matrix STchain_in, Matrix Vchain_in, Matrix Nchain_in, Matrix SCVchain_in, double Nt, double delta, Matrix deltaclass, List<Integer> ocl, List<Integer> ccl, List<Integer> nnzclasses, Map<Integer, List<Integer>> nnzclasses_eprio, Map<Integer, List<Integer>> nnzclasses_hprio, Map<Integer, List<Integer>> nnzclasses_ehprio, NetworkStruct sn, SolverOptions options) Modifier and TypeMethodDescriptionAMVALDHandler.solver_amvald_forward
(List<Matrix> gamma, Matrix tau, Matrix Qchain_in, Matrix Xchain_in, Matrix Uchain_in, Matrix STchain_in, Matrix Vchain_in, Matrix Nchain_in, Matrix SCVchain_in, double Nt, double delta, Matrix deltaclass, List<Integer> ocl, List<Integer> ccl, List<Integer> nnzclasses, Map<Integer, List<Integer>> nnzclasses_eprio, Map<Integer, List<Integer>> nnzclasses_hprio, Map<Integer, List<Integer>> nnzclasses_ehprio, NetworkStruct sn, SolverOptions options) -
Uses of Matrix in jline.solvers.nc
Modifier and TypeFieldDescriptionSolverNC.SolverNCLDReturn.C
SolverNCResult.hitProb
SolverNC.SolverNCMargReturn.lPr
SolverNCResult.missProb
SolverNC.SolverNCLDReturn.Q
SolverNC.SolverNCReturn.Q
SolverNCResult.Q
SolverNC.SolverNCLDReturn.R
SolverNC.SolverNCReturn.R
SolverNCResult.R
SolverNC.SolverNCReturn.STeff
SolverNCResult.STeff
SolverNC.SolverNCLDReturn.T
SolverNC.SolverNCReturn.T
SolverNCResult.T
SolverNC.SolverNCLDReturn.U
SolverNC.SolverNCReturn.U
SolverNCResult.U
SolverNC.SolverNCLDReturn.X
SolverNC.SolverNCReturn.X
SolverNCResult.X
ModifierConstructorDescriptionSolverNCLDReturn
(Matrix Q, Matrix U, Matrix R, Matrix T, Matrix C, Matrix X, double lG, double runtime, int it, String method) SolverNCMargReturn
(Matrix lPr, double G, double runtime) SolverNCReturn
(Matrix Q, Matrix U, Matrix R, Matrix T, int C, Matrix X, double lG, Matrix STeff, int it, double runtime, String method) -
Uses of Matrix in jline.solvers.ssa
Modifier and TypeFieldDescriptionfinal Matrix
SSAValues.pi
final Matrix
SSAValues.SSq
SolverSSAResult.tranSync
final Matrix
SSAValues.tranSync
Modifier and TypeFieldDescriptionSSAValues.arvRates
SSAValues.depRates
SolverSSAResult.space
SolverSSAResult.tranSysState
SSAValues.tranSysState
ModifierConstructorDescriptionSolverSSAResult
(Matrix QN, Matrix UN, Matrix RN, Matrix TN, Matrix CN, Matrix XN, Map<Integer, Matrix> tranSysState, Matrix tranSync, NetworkStruct sn) SSAValues
(Matrix pi, Matrix SSq, Map<Integer, Matrix> arvRates, Map<Integer, Matrix> depRates, Map<Integer, Matrix> tranSysState, Matrix tranSync, NetworkStruct sn) ModifierConstructorDescriptionSolverSSAResult
(Matrix QN, Matrix UN, Matrix RN, Matrix TN, Matrix CN, Matrix XN, Map<Integer, Matrix> tranSysState, Matrix tranSync, NetworkStruct sn) SSAValues
(Matrix pi, Matrix SSq, Map<Integer, Matrix> arvRates, Map<Integer, Matrix> depRates, Map<Integer, Matrix> tranSysState, Matrix tranSync, NetworkStruct sn) -
Uses of Matrix in jline.util
Modifier and TypeFieldDescriptionMaths.infradius_h.alpha
Maths.infradius_hnorm.alpha
Maths.laplaceApproxReturn.H
ComplexMatrix.im
Maths.infradius_h.L
Maths.infradius_hnorm.L
Maths.nrl_h.L
Maths.nrp_h.L
PopulationLattice.sprodResult.n
Maths.infradius_h.N
Maths.infradius_hnorm.N
ComplexMatrix.real
PopulationLattice.sprodResult.s
PopulationLattice.sprodResult.S
final Matrix
UniqueRowResult.sortedMatrix
Maths.nrl_h.tsubtb
Maths.nrp_h.tsubtb
final Matrix
UniqueRowResult.vi
Modifier and TypeMethodDescriptionstatic Matrix
Returns all elements in a matrix except the first onesstatic Matrix
Cartesian product of two matrices.Matrix.ceil()
Computes the matrix resulted from ceiling every member of the current matrixMatrix.ceilEq()
Computes the matrix resulted from ceiling every member of the current matrixstatic Matrix
static Matrix
static Matrix
Maths.circul
(int c) static Matrix
Matrix.clone()
static Matrix
Matrix.col_vector_add_row_vector
(Matrix col_vector, Matrix row_vector) Matrix.colon()
Matrix.columnMajorOrder()
Equivalent to the colon operator in MATLAB: (:).Matrix.compatible_sizes_add
(Matrix b) Matrix.concatCols
(Matrix other) Concatenates the columns of two matricesstatic Matrix
Matrix.concatColumns
(Matrix left, Matrix right, Matrix out) static Matrix
Matrix.concatRows
(Matrix top, Matrix bottom, Matrix out) Matrix.countEachRow
(double val) Matrix.createBlockDiagonal
(Matrix matrix2) static Matrix
Matrix.createLike
(Matrix B) Matrix.cumsumViaCol()
Matrix.cumsumViaRow()
static Matrix
Matrix.diag
(double... values) static Matrix
Matrix.diagMatrix
(Matrix A, double[] values, int offset, int length) Matrix.eigenvalue()
Matrix.eigenvector()
Matrix.element_divide
(Matrix b) Matrix.element_power
(double a) Matrix.elementDiv
(Matrix B) Performs element-wise divisionMatrix.elementIncrease
(double val) Matrix.elementMult
(Matrix B) Matrix.elementMult
(Matrix B, Matrix output) Matrix.elementMultWithVector
(Matrix B) Performs element-wise multiplication Note that B is a row vector, and the result is A_{ij} = \sum_{j=1}^n A_{ij} * B(i)Matrix.elementPower
(double t) Matrix.exp()
Matrix.expm()
Adapted from jblas and IHMC Original documentation:static Matrix
static Matrix
static Matrix
Matrix.extractColumn
(Matrix A, int column, Matrix out) static Matrix
Matrix.extractColumns
(Matrix A, int col0, int col1) static Matrix
Matrix.extractColumns
(Matrix A, int col0, int col1, Matrix out) static Matrix
Matrix.extractRows
(Matrix A, int row0, int row1) static Matrix
Matrix.extractRows
(Matrix A, int row0, int row1, Matrix out) static Matrix
Matrix.eye
(int length) Matrix.fact()
Matrix.factln()
static Matrix
Computes log(x!) of all elements x of the input matrixMatrix.fill
(double val) Matrix.find()
Matrix.findNonNegative()
Matrix.findNumber
(double number) Matrix.findZero()
Matrix.fromArray2D
(double[][] matrix) Matrix.fromArray2D
(int[][] matrix) MatrixCell.get
(int i) Matrix.getColumn
(int j) Matrix.getRow
(int i) Matrix.getRowElements
(int row) Matrix.getRowsFrom
(int row) Matrix.getSlice
(boolean[] rowFlags, boolean[] colFlags) Matrix.getSlice
(int rowStart, int rowEnd, int colStart, int colEnd) Matrix.getSubMatrix
(Matrix rows, Matrix cols) static Matrix
Implementation of MATLAB "hist": puts elements of v into k binsMatrix.inv()
static Matrix
Matrix.left_matrix_divide
(Matrix b) Matrix.log()
MatrixEquation.lookupSimple
(String token) static Matrix
static Matrix
Matrix.matrix_add_vector
(Matrix matrix, Matrix vector) Matrix.meanCol()
Matrix.meanRow()
static Matrix
Maths.multichoose
(double n, double k) static Matrix
Maths.multiChooseCon
(Matrix n, double S) static Matrix
Computes the combinations of the elements in v taken k at a timestatic Matrix
static Matrix
Maths.num_grad_h
(Matrix x0, double h, SerializableFunction<Matrix, Matrix> hfun) static Matrix
Maths.num_hess_h
(Matrix x0, double h, SerializableFunction<Matrix, Matrix> hfun) static Matrix
Matrix.oneMinusMatrix
(Matrix matrix) static Matrix
Decrease by one an element of an integer vector.static Matrix
Decrease by one an element of an integer vector.static Matrix
Matrix.ones
(int rows, int cols) static Matrix
static Matrix
static Matrix
static Matrix
static Matrix
Matrix.readFromFile
(String fileName) Matrix.reciprocal()
Matrix.repmat
(int rows, int cols) Matrix.reverse()
For a vector, return a matrix with reversed index positions.Matrix.reverseRows()
Matrix.right_matrix_divide
(Matrix b) Matrix.scale
(double scalar) static Matrix
Matrix.scale_mult
(Matrix a, double n) Matrix.setColumns
(int j0, int j1, Matrix cols) static Matrix
Matrix.singleton
(double value) Matrix.sort()
Sort the elements of the matrixMatrix.sortEq()
Sort the elements of the matrixMatrix.sqrt()
Matrix.square()
Matrix.sub
(double x) Matrix.sumCols()
Matrix.sumCols
(int startRow, int endRow) Matrix.sumRows()
Matrix.sumRows
(int startCol, int endCol) static Matrix
Matrix.transpose()
Matrix.uniqueInCol
(int colIdx) Matrix.uniqueInRow
(int rowIdx) Matrix.uniqueNonNegativeInCol
(int colIdx) Matrix.uniqueNonNegativeInRow
(int rowIdx) Matrix.uniqueNonZerosInCol
(int colIdx) Matrix.uniqueNonZerosInRow
(int rowIdx) static Matrix
Maths.uniquePerms
(Matrix vec) static Matrix
Matrix.zeros
(int rows, int cols) Modifier and TypeMethodDescriptionvoid
void
static Matrix
Returns all elements in a matrix except the first onesorg.apache.commons.math3.complex.Complex
org.apache.commons.math3.complex.Complex
static Matrix
Cartesian product of two matrices.static Matrix
static Matrix
Matrix.col_vector_add_row_vector
(Matrix col_vector, Matrix row_vector) static double[]
Matrix.columnMatrixToDoubleArray
(Matrix columnMatrix) static boolean
boolean
Matrix.compareMatrix
(Matrix matrix) Matrix.compatible_sizes_add
(Matrix b) Matrix.concatCols
(Matrix other) Concatenates the columns of two matricesstatic Matrix
Matrix.concatColumns
(Matrix left, Matrix right, Matrix out) static Matrix
Matrix.concatRows
(Matrix top, Matrix bottom, Matrix out) Matrix.createBlockDiagonal
(Matrix matrix2) static Matrix
Matrix.createLike
(Matrix B) static Matrix
Matrix.diagMatrix
(Matrix A, double[] values, int offset, int length) void
void
Matrix.element_divide
(Matrix b) Matrix.elementDiv
(Matrix B) Performs element-wise divisionstatic double
Matrix.elementMinNonZero
(Matrix matrix) Matrix.elementMult
(Matrix B) Matrix.elementMult
(Matrix B, Matrix output) Matrix.elementMultWithVector
(Matrix B) Performs element-wise multiplication Note that B is a row vector, and the result is A_{ij} = \sum_{j=1}^n A_{ij} * B(i)static Matrix
static Matrix
static void
Matrix.extract
(Matrix src, int srcX0, int srcX1, int srcY0, int srcY1, Matrix dst, int dstY0, int dstX0) static Matrix
Matrix.extractColumn
(Matrix A, int column, Matrix out) static Matrix
Matrix.extractColumns
(Matrix A, int col0, int col1) static Matrix
Matrix.extractColumns
(Matrix A, int col0, int col1, Matrix out) static void
Matrix.extractDiag
(Matrix A, Matrix outputB) static Matrix
Matrix.extractRows
(Matrix A, int row0, int row1) static Matrix
Matrix.extractRows
(Matrix A, int row0, int row1, Matrix out) static Matrix
Computes log(x!) of all elements x of the input matrixMatrix.findIndexWithZeroSum
(Matrix matrix, boolean isRow) static double
Matrix.first_norm
(Matrix a) Matrix.getSubMatrix
(Matrix rows, Matrix cols) static int
static int
static Matrix
Implementation of MATLAB "hist": puts elements of v into k binsstatic double
void
Matrix.insert_sub_matrix
(int start_row, int start_col, int end_row, int end_col, Matrix matrix_to_be_inserted) Interesection of two matrices.static Matrix
boolean
Checks if two matrices are equalboolean
Matrix.isEqualToTol
(Matrix m, double tol) Checks if two matrices are equal within a tolerancestatic Maths.laplaceApproxReturn
Maths.laplaceapprox_h
(Matrix x0, SerializableFunction<Matrix, Matrix> h) Maths.laplaceapprox_h_complex
(Matrix x0, SerializableFunction<Matrix, ComplexMatrix> h) Matrix.left_matrix_divide
(Matrix b) static double
Maths.logmeanexp
(Matrix x) static double
static double
Computes log(sum_i exp(x_i)) of all elements x_i of the input matrixstatic Matrix
static double
static int
Returns the position of the given row in the corresponding matrixstatic Matrix
Matrix.matrix_add_vector
(Matrix matrix, Matrix vector) static double
Matrix.maxAbsDiff
(Matrix a, Matrix b) void
static Matrix
Maths.multiChooseCon
(Matrix n, double S) static double
Maths.multinomialln
(Matrix n) static Matrix
Computes the combinations of the elements in v taken k at a timestatic Matrix
static Matrix
Maths.num_grad_h
(Matrix x0, double h, SerializableFunction<Matrix, Matrix> hfun) static ComplexMatrix
Maths.num_grad_h_complex
(Matrix x0, double h, SerializableFunction<Matrix, ComplexMatrix> hfun) static Matrix
Maths.num_hess_h
(Matrix x0, double h, SerializableFunction<Matrix, Matrix> hfun) static ComplexMatrix
Maths.num_hess_h_complex
(Matrix x0, double h, SerializableFunction<Matrix, ComplexMatrix> hfun) static Matrix
Matrix.oneMinusMatrix
(Matrix matrix) static Matrix
Decrease by one an element of an integer vector.static Matrix
Decrease by one an element of an integer vector.static Matrix
static Matrix
static Matrix
static Matrix
Matrix.right_matrix_divide
(Matrix b) static org.apache.commons.math3.complex.Complex[]
static Matrix
Matrix.scale_mult
(Matrix a, double n) void
Matrix.setColumns
(int j0, int j1, Matrix cols) void
Matrix.setSliceEq
(int rowStart, int rowEnd, int colStart, int colEnd, Matrix newSlice) void
Copy values of the input matrixstatic double
Maths.simplex_fun
(double[] x, Matrix L, Matrix N) static boolean
PopulationLattice.sprod
(Matrix s, Matrix S, MatrixCell D) void
void
static double
Matrix.sumCumprod
(Matrix matrix) static Matrix
org.ejml.data.DMatrixSparseCSC
Matrix.toDMatrixSparseCSC
(Matrix matrix) static Matrix
Maths.uniquePerms
(Matrix vec) static UniqueRowResult
Matrix.uniqueRowIndexes
(Matrix m) static UniqueRowResult
Matrix.uniqueRows
(Matrix m) Matrix.weaklyConnect
(Matrix param, Set<Integer> colsToIgnore) Weakly-connected components of a sub-matrix.Modifier and TypeMethodDescriptionstatic Matrix
static Matrix
static int
Matrix.getColIndexSum
(Map<Integer, Matrix> cellArray) static Maths.laplaceApproxReturn
Maths.laplaceapprox_h
(Matrix x0, SerializableFunction<Matrix, Matrix> h) static Maths.laplaceApproxReturn
Maths.laplaceapprox_h
(Matrix x0, SerializableFunction<Matrix, Matrix> h) Maths.laplaceapprox_h_complex
(Matrix x0, SerializableFunction<Matrix, ComplexMatrix> h) static Matrix
Maths.num_grad_h
(Matrix x0, double h, SerializableFunction<Matrix, Matrix> hfun) static Matrix
Maths.num_grad_h
(Matrix x0, double h, SerializableFunction<Matrix, Matrix> hfun) static ComplexMatrix
Maths.num_grad_h_complex
(Matrix x0, double h, SerializableFunction<Matrix, ComplexMatrix> hfun) static Matrix
Maths.num_hess_h
(Matrix x0, double h, SerializableFunction<Matrix, Matrix> hfun) static Matrix
Maths.num_hess_h
(Matrix x0, double h, SerializableFunction<Matrix, Matrix> hfun) static ComplexMatrix
Maths.num_hess_h_complex
(Matrix x0, double h, SerializableFunction<Matrix, ComplexMatrix> hfun) ModifierConstructorDescriptionComplexMatrix
(Matrix real) ComplexMatrix
(Matrix real, Matrix im) infradius_h
(Matrix L, Matrix N, Matrix alpha) infradius_hnorm
(Matrix L, Matrix N, Matrix alpha) laplaceApproxReturn
(Matrix H, double I, double logI) MatrixCell
(Matrix[] x) MatrixCell
(Matrix D0, Matrix D1) sprodResult
(Matrix s, Matrix n, Matrix S, MatrixCell D) UndirectedGraph
(Matrix param) UndirectedGraph
(Matrix param, Set<Integer> colsToIgnore)