Uses of Class
jline.util.MatrixCell
Package
Description
Procedural algorithms for solving stochastic models
Input/output from the command line or XML files.
Abstractions to declare basic elements of a model.
This package contains statistical distributions used to specify arrival rates, service rates, and item popularities
Classes that partially migrate third-party libraries to Java
Analysis approaches based on matrix-analytic methods
This package contains some fundamental data structures and utilities
-
Uses of MatrixCell in jline.api
Modifier and TypeMethodDescriptionstatic MatrixCell
MAM.aph_fit
(double e1, double e2, double e3) Fits an acyclic phase-type (APH) distribution to the given moments of a random variable.static MatrixCell
MAM.aph_fit
(double e1, double e2, double e3, int nmax) Fits an acyclic phase-type (APH) distribution to the given moments of a random variable.static MatrixCell
MAM.aph2_assemble
(double l1, double l2, double p1) Assembles an acyclic phase-type (APH) distribution with two phases (APH(2)) using the given parameters.static MatrixCell
MAM.mamap2m_fit_gamma_fb_mmap
(MatrixCell mmap) static MatrixCell
MAM.map_erlang
(double mean, int k) Fits an Erlang-k process as a Markovian Arrival Process (MAP).static MatrixCell
MAM.map_exponential
(double mean) Creates a Markovian Arrival Process (MAP) with an exponential inter-arrival time distribution.static MatrixCell
MAM.map_hyperexp
(double mean, double scv, double p) Fit a two-phase Hyper-exponential renewal process as a MAPstatic MatrixCell
MAM.map_mark
(MatrixCell MAP, Matrix prob) Creates a Marked Markovian Arrival Process (MMAP) by marking a given Markovian Arrival Process (MAP) with additional phases based on specified marking probabilities.static MatrixCell
MAM.map_normalize
(MatrixCell MAP) Sanitizes the (D0, D1) matrices of a Markovian Arrival Process (MAP) stored in a MatrixCell.static MatrixCell
MAM.map_normalize
(Matrix D0, Matrix D1) Sanitizes the (D0, D1) matrices of a Markovian Arrival Process (MAP) by ensuring all elements are non-negative and adjusting diagonal elements.MAM.map_rand()
Generates a random Markovian Arrival Process (MAP) with 2 states.static MatrixCell
MAM.map_rand
(int K) Generates a random Markovian Arrival Process (MAP) with K states.MAM.map_randn()
Generates a random Markovian Arrival Process (MAP) with 2 states using normal distribution with mean 1 and standard deviation 2.static MatrixCell
MAM.map_randn
(int K, double mu, double sigma) Generates a random Markovian Arrival Process (MAP) with K states using normal distribution.static MatrixCell
MAM.map_scale
(MatrixCell MAP, double newMean) Rescales the mean inter-arrival time of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static MatrixCell
Rescales the mean inter-arrival time of a Markovian Arrival Process (MAP) to a specified new mean.static MatrixCell
MAM.map_sum
(MatrixCell MAP, int n) Computes the Markovian Arrival Process (MAP) representing the sum of `n` identical MAPs.static MatrixCell
MAM.map_sumind
(MatrixCell[] MAPs) Computes the Markovian Arrival Process (MAP) representing the sum of `n` independent MAPs.static MatrixCell
MAM.map_super
(MatrixCell MAPa, MatrixCell MAPb) Creates a superposition of two Markovian Arrival Processes (MAPs) to form a new MAP.static MatrixCell
MAM.map_timereverse
(MatrixCell map) Computes the time-reversed MAP of a given MAP.static MatrixCell
MAM.mmap_compress
(MatrixCell MMAP) Compresses a Markovian Arrival Process with marked arrivals (MMAP) as a mixture of 2-state acyclic Markovian Arrival Processes (MAPs).static MatrixCell
MAM.mmap_compress
(MatrixCell MMAP, SolverOptions config) Compresses a Markovian Arrival Process with marked arrivals (MMAP) based on the provided configuration options.static MatrixCell
MAM.mmap_exponential
(Matrix lambda) Fits a Markovian Arrival Process with marked arrivals (MMAP) with a single state based on the given arrival rates for each job class.static MatrixCell
MAM.mmap_exponential
(Matrix lambda, int n) Fits an order-n Markovian Arrival Process with marked arrivals (MMAP) based on the given arrival rates for each job class.static MatrixCell
MAM.mmap_hide
(MatrixCell MMAP, Matrix types) Hides specified types of arrivals in a Markovian Arrival Process with marked arrivals (MMAP).static MatrixCell
MAM.mmap_mark
(MatrixCell MMAP, Matrix prob) Converts a Markovian Arrival Process with marked arrivals (MMAP) into a new MMAP with redefined classes based on a given probability matrix.static MatrixCell
MAM.mmap_mixture
(Matrix alpha, Map<Integer, MatrixCell> MAPs) Creates a mixture of MMAPs using the given weights (alpha) and MAPs.static MatrixCell
MAM.mmap_normalize
(MatrixCell MMAP) Normalizes a Markovian Arrival Process with marked arrivals (MMAP) to ensure feasibility.static MatrixCell
MAM.mmap_rand
(int order, int classes) Generates a random MMAP (Marked Markovian Arrival Process) with a given order and number of classes.static MatrixCell
MAM.mmap_scale
(MatrixCell MMAP, Matrix M) Changes the mean inter-arrival time of a Markovian Arrival Process with marked arrivals (MMAP).static MatrixCell
MAM.mmap_shorten
(MatrixCell mmap) Converts an MMAP representation from M3A format to BUTools format.static MatrixCell
MAM.mmap_super
(MatrixCell MMAPa) Combines a list of MMAPs into one superposed MMAP.static MatrixCell
MAM.mmap_super
(MatrixCell MMAPa, MatrixCell MMAPb) Combines two MMAPs into one superposed MMAP using the default option.static MatrixCell
MAM.mmap_super
(MatrixCell MMAPa, MatrixCell MMAPb, String opt) Combines two MMAPs into one superposed MMAP.static MatrixCell
MAM.mmap_super_safe
(Map<Integer, MatrixCell> MMAPS, int maxorder) Safely combines multiple MMAPs into a single superposed MMAP using the default method, while considering order constraints.static MatrixCell
MAM.mmap_super_safe
(Map<Integer, MatrixCell> MMAPS, int maxorder, String method) Safely combines multiple MMAPs into a single superposed MMAP while considering order constraints.static MatrixCell
MAM.mmap_timereverse
(MatrixCell mmap) Computes the time-reversed version of a Markovian Arrival Process with marked arrivals (MMAP).static MatrixCell
MAM.mmpp2_fit
(double E1, double E2, double E3, double G2) Fits a 2-phase Markovian Arrival Process (MMPP2) to match the given first three moments and a fourth parameter G2.static MatrixCell
MAM.mmpp2_fit1
(double mean, double scv, double skew, double idc) Fits a 2-phase Markov Modulated Poisson Process (MMPP2) based on the specified parameters.static MatrixCell
NPFQN.npfqn_traffic_merge
(Map<Integer, MatrixCell> MMAPa, String config_merge_, String config_compress_) Merges MMAP traffic flows with specified configurations.static MatrixCell
NPFQN.npfqn_traffic_merge_cs
(Map<Integer, MatrixCell> MMAPs, Matrix prob) Merges MMAP traffic flows with class switching using default parameters.static MatrixCell
NPFQN.npfqn_traffic_merge_cs
(Map<Integer, MatrixCell> MMAPs, Matrix prob, String config) Merges MMAP traffic flows with class switching.Modifier and TypeMethodDescriptionstatic Map<Integer,
MatrixCell> MAM.aph2_fitall
(double M1, double M2, double M3) Fits a set of acyclic phase-type (APH) distributions with two phases (APH(2)) to match the given moments of a random variable.static Map<Integer,
MatrixCell> MAM.mmap_maps
(MatrixCell MMAP) Extracts K Markovian Arrival Processes (MAPs) from a given MMAP, one for each class.static Map<Integer,
MatrixCell> NPFQN.npfqn_traffic_split_cs
(MatrixCell MMAP, Matrix P) Splits MMAP traffic flows with class switching.static Map<Integer,
Map<Integer, MatrixCell>> MAM.ph_reindex
(Map<Station, Map<JobClass, MatrixCell>> PHs, NetworkStruct sn) Reindexes a map of phase-type (PH) distributions for a network model based on station and job class indices.Modifier and TypeMethodDescriptionstatic Ret.cacheMissRayInt
CACHE.cache_miss_rayint
(Matrix gamma, Matrix m, MatrixCell lambda) Estimates the cache miss rate and related metrics using the ray method for PDEs.static MatrixCell
MAM.mamap2m_fit_gamma_fb_mmap
(MatrixCell mmap) static Matrix
MAM.map_acf
(MatrixCell MAP) Computes the autocorrelation function (ACF) for a given MAP using a default lag of 1.static Matrix
MAM.map_acf
(MatrixCell MAP, Matrix lags) Computes the autocorrelation function (ACF) for a given MAP at multiple lags using a MatrixCell.static double[]
MAM.map_acfc
(MatrixCell MAP, int[] lags, double u) Computes the autocorrelation function coefficients (ACFC) for a MAP counting process using a MatrixCell.static Matrix
MAM.map_cdf
(MatrixCell MAP, Matrix points) Computes the cumulative distribution function (CDF) of the inter-arrival times of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static boolean
MAM.map_checkfeasible
(MatrixCell MAP, double TOL) Placeholder method to check the feasibility of a MAP.double
MAM.map_count_mean
(MatrixCell MAP, double t) Computes the mean of the counting process over a specified interval length for a given Markovian Arrival Process (MAP).double[]
MAM.map_count_mean
(MatrixCell MAP, double[] t) Computes the mean of the counting process over multiple specified interval lengths for a given Markovian Arrival Process (MAP).double
MAM.map_count_var
(MatrixCell MAP, double t) Computes the variance of the counting process over a specified interval length for a given Markovian Arrival Process (MAP).double[]
MAM.map_count_var
(MatrixCell MAP, double[] t) Computes the variance of the counting process over multiple specified interval lengths for a given Markovian Arrival Process (MAP).static Matrix
MAM.map_embedded
(MatrixCell MAP) Computes the embedded discrete-time Markov chain (DTMC) matrix of a MAP given as a MatrixCell.static double
MAM.map_gamma
(MatrixCell MAP) Computes the gamma parameter for a MAP using a MatrixCell.static double[]
MAM.map_gamma2
(MatrixCell MAP) Returns the largest non-unit eigenvalue (both real and imaginary parts) of the embedded Discrete-Time Markov Chain (DTMC) of a given Markovian Arrival Process (MAP).static double
MAM.map_idc
(MatrixCell MAP) Computes the asymptotic index of dispersion (IDC) for a MAP stored in a MatrixCell that contains the MAP's transition matrices.static Matrix
MAM.map_infgen
(MatrixCell MAP) Computes the infinitesimal generator matrix (Q) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).static boolean
MAM.map_isfeasible
(MatrixCell MAP) Checks if the provided MAP is feasible using a default tolerance.static boolean
MAM.map_isfeasible
(MatrixCell MAP, double TOL) Checks if the provided MAP is feasible based on the given tolerance.static double
MAM.map_lambda
(MatrixCell MAP) Computes the arrival rate (lambda) of a Markovian Arrival Process (MAP) using matrices stored in a MatrixCell.static MatrixCell
MAM.map_mark
(MatrixCell MAP, Matrix prob) Creates a Marked Markovian Arrival Process (MMAP) by marking a given Markovian Arrival Process (MAP) with additional phases based on specified marking probabilities.static double
MAM.map_mean
(MatrixCell MAP) Computes the mean inter-arrival time of a Markovian Arrival Process (MAP) using matrices stored in a MatrixCell.static double
MAM.map_moment
(MatrixCell MAP, int order) Computes the raw moments of the inter-arrival times of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static MatrixCell
MAM.map_normalize
(MatrixCell MAP) Sanitizes the (D0, D1) matrices of a Markovian Arrival Process (MAP) stored in a MatrixCell.static Matrix
MAM.map_pie
(MatrixCell MAP) Computes the steady-state probability vector of the embedded DTMC of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static Matrix
MAM.map_piq
(MatrixCell MAP) Computes the steady-state vector (pi) of the Continuous-Time Markov Chain (CTMC) underlying a Markovian Arrival Process (MAP).static double[]
MAM.map_sample
(MatrixCell MAP, long n, Random random) Generates samples of inter-arrival times from a MAP using a specified number of samples and a random generator.static MatrixCell
MAM.map_scale
(MatrixCell MAP, double newMean) Rescales the mean inter-arrival time of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static double
MAM.map_scv
(MatrixCell MAP) Computes the squared coefficient of variation (SCV) of the inter-arrival times of a MAP stored in a MatrixCell that contains the MAP's transition matrices.static double
MAM.map_skew
(MatrixCell MAP) Computes the skewness of the inter-arrival times for a MAP using a MatrixCell.static MatrixCell
MAM.map_sum
(MatrixCell MAP, int n) Computes the Markovian Arrival Process (MAP) representing the sum of `n` identical MAPs.static MatrixCell
MAM.map_sumind
(MatrixCell[] MAPs) Computes the Markovian Arrival Process (MAP) representing the sum of `n` independent MAPs.static MatrixCell
MAM.map_super
(MatrixCell MAPa, MatrixCell MAPb) Creates a superposition of two Markovian Arrival Processes (MAPs) to form a new MAP.static MatrixCell
MAM.map_timereverse
(MatrixCell map) Computes the time-reversed MAP of a given MAP.static double
MAM.map_var
(MatrixCell MAP) Computes the variance of the inter-arrival times for a MAP using a MatrixCell.static double
MAM.map_varcount
(MatrixCell MAP, double t) Computes the variance of the counts in a MAP over a time period t using a MatrixCell.static Matrix
MAM.map_varcount
(MatrixCell MAP, Matrix t) Computes the variance of the counts in a MAP over multiple time periods using a MatrixCell.static Matrix
MAM.mmap_backward_moment
(MatrixCell MMAP, Matrix ORDERS) Computes the backward moments of an MMAP for specified orders with normalization.static Matrix
MAM.mmap_backward_moment
(MatrixCell MMAP, Matrix ORDERS, int NORM) Computes the backward moments of an MMAP for specified orders.static MatrixCell
MAM.mmap_compress
(MatrixCell MMAP) Compresses a Markovian Arrival Process with marked arrivals (MMAP) as a mixture of 2-state acyclic Markovian Arrival Processes (MAPs).static MatrixCell
MAM.mmap_compress
(MatrixCell MMAP, SolverOptions config) Compresses a Markovian Arrival Process with marked arrivals (MMAP) based on the provided configuration options.static Matrix
MAM.mmap_count_idc
(MatrixCell MMAP, double t) Computes the index of dispersion for counts (IDC) for a Markovian Arrival Process with marked arrivals (MMAP) over a time period.static Matrix
MAM.mmap_count_lambda
(MatrixCell mmap) Computes the arrival rate vector of the counting process for the given Marked MAP (MMAP).static Matrix
MAM.mmap_count_mean
(MatrixCell MMAP, double t) Computes the mean count vector of events of different types in a Markovian Arrival Process with marked arrivals (MMAP) over a time period.static Matrix
MAM.mmap_count_var
(MatrixCell MMAP, double t) Computes the variance of the count vector of events of different types in a Markovian Arrival Process with marked arrivals (MMAP) over a time period.static Matrix
MAM.mmap_cross_moment
(MatrixCell mmap, int k) Computes the k-th cross-moment matrix for a given MMAP.static Matrix
MAM.mmap_forward_moment
(MatrixCell MMAP, Matrix ORDERS) Computes the forward moments of an MMAP for specified orders with normalization.static Matrix
MAM.mmap_forward_moment
(MatrixCell MMAP, Matrix ORDERS, int NORM) Computes the forward moments of an MMAP for specified orders.static MatrixCell
MAM.mmap_hide
(MatrixCell MMAP, Matrix types) Hides specified types of arrivals in a Markovian Arrival Process with marked arrivals (MMAP).static Matrix
MAM.mmap_idc
(MatrixCell MMAP) Computes the asymptotic index of dispersion for counts (IDC) for a Markovian Arrival Process with marked arrivals (MMAP).static boolean
MAM.mmap_isfeasible
(MatrixCell MMAP) Checks the feasibility of a Markovian Arrival Process with marked arrivals (MMAP).static Matrix
MAM.mmap_lambda
(MatrixCell MMAP) Alias for mmap_count_lambda.static Map<Integer,
MatrixCell> MAM.mmap_maps
(MatrixCell MMAP) Extracts K Markovian Arrival Processes (MAPs) from a given MMAP, one for each class.static MatrixCell
MAM.mmap_mark
(MatrixCell MMAP, Matrix prob) Converts a Markovian Arrival Process with marked arrivals (MMAP) into a new MMAP with redefined classes based on a given probability matrix.static Ret.mamMMAPMixtureFit
MAM.mmap_mixture_fit_mmap
(MatrixCell mmap) Fits a mixture of Markovian Arrival Processes (MMAPs) to match the given moments.static MatrixCell
MAM.mmap_normalize
(MatrixCell MMAP) Normalizes a Markovian Arrival Process with marked arrivals (MMAP) to ensure feasibility.static Matrix
MAM.mmap_pc
(MatrixCell MMAP) Computes the proportion of counts (PC) for each type in a Markovian Arrival Process with marked arrivals (MMAP).static Ret.mamMMAPSample
MAM.mmap_sample
(MatrixCell MMAP, long n) Generates samples of inter-arrival times and event types from a MMAP using a specified number of samples.static Ret.mamMMAPSample
MAM.mmap_sample
(MatrixCell MMAP, long n, Random random) Generates samples of inter-arrival times and event types from a MMAP using a specified number of samples and a random generator.static MatrixCell
MAM.mmap_scale
(MatrixCell MMAP, Matrix M) Changes the mean inter-arrival time of a Markovian Arrival Process with marked arrivals (MMAP).static MatrixCell
MAM.mmap_shorten
(MatrixCell mmap) Converts an MMAP representation from M3A format to BUTools format.MAM.mmap_sigma2
(MatrixCell mmap) Computes the second-order sigma values (covariances) for a given MMAP.static MatrixCell
MAM.mmap_super
(MatrixCell MMAPa) Combines a list of MMAPs into one superposed MMAP.static MatrixCell
MAM.mmap_super
(MatrixCell MMAPa, MatrixCell MMAPb) Combines two MMAPs into one superposed MMAP using the default option.static MatrixCell
MAM.mmap_super
(MatrixCell MMAPa, MatrixCell MMAPb, String opt) Combines two MMAPs into one superposed MMAP.static MatrixCell
MAM.mmap_timereverse
(MatrixCell mmap) Computes the time-reversed version of a Markovian Arrival Process with marked arrivals (MMAP).static Map<Integer,
MatrixCell> NPFQN.npfqn_traffic_split_cs
(MatrixCell MMAP, Matrix P) Splits MMAP traffic flows with class switching.static Ret.pfqnCore
PFQN.pfqn_conwayms_core
(Matrix L, int M, int R, Matrix N_1, Matrix Z, int[] nservers, Matrix Q, Matrix P, Matrix PB, MatrixCell Delta, SchedStrategy[] type, double tol, int maxiter) static Ret.pfqnEstimate
PFQN.pfqn_conwayms_estimate
(int M, int R, Matrix N_1, int[] nservers, Matrix Q, Matrix P, Matrix PB, MatrixCell Delta, Matrix W) static Ret.pfqnForwardMVA
PFQN.pfqn_conwayms_forwardmva
(Matrix L, int M, int R, Matrix N_1, Matrix Z, int[] nservers, SchedStrategy[] type, MatrixCell Q_1, MatrixCell P_1, Matrix PB_1, Matrix T_1) static double[]
POLLING.polling_qsys_1limited
(MatrixCell[] arvMAPs, MatrixCell[] svcMAPs, MatrixCell[] switchMAPs) Computes the exact mean waiting time solution for a polling system with open arrivals.static double[]
POLLING.polling_qsys_exhaustive
(MatrixCell[] arvMAPs, MatrixCell[] svcMAPs, MatrixCell[] switchMAPs) Computes the exact mean waiting time solution for a polling system with open arrivals, where all queues are served exhaustively.static double[]
POLLING.polling_qsys_gated
(MatrixCell[] arvMAPs, MatrixCell[] svcMAPs, MatrixCell[] switchMAPs) Computes the exact mean waiting time solution for a polling system with open arrivals, where all queues use gated service discipline.Modifier and TypeMethodDescriptionstatic MatrixCell
MAM.mmap_mixture
(Matrix alpha, Map<Integer, MatrixCell> MAPs) Creates a mixture of MMAPs using the given weights (alpha) and MAPs.static MatrixCell
MAM.mmap_super_safe
(Map<Integer, MatrixCell> MMAPS, int maxorder) Safely combines multiple MMAPs into a single superposed MMAP using the default method, while considering order constraints.static MatrixCell
MAM.mmap_super_safe
(Map<Integer, MatrixCell> MMAPS, int maxorder, String method) Safely combines multiple MMAPs into a single superposed MMAP while considering order constraints.static MatrixCell
NPFQN.npfqn_traffic_merge
(Map<Integer, MatrixCell> MMAPa, String config_merge_, String config_compress_) Merges MMAP traffic flows with specified configurations.static MatrixCell
NPFQN.npfqn_traffic_merge_cs
(Map<Integer, MatrixCell> MMAPs, Matrix prob) Merges MMAP traffic flows with class switching using default parameters.static MatrixCell
NPFQN.npfqn_traffic_merge_cs
(Map<Integer, MatrixCell> MMAPs, Matrix prob, String config) Merges MMAP traffic flows with class switching.static Map<Integer,
Map<Integer, MatrixCell>> MAM.ph_reindex
(Map<Station, Map<JobClass, MatrixCell>> PHs, NetworkStruct sn) Reindexes a map of phase-type (PH) distributions for a network model based on station and job class indices. -
Uses of MatrixCell in jline.io
Modifier and TypeFieldDescriptionRet.mamAPH2Fit.APH
Ret.mamMAPFitReturn.MAP
Ret.mamMMAPMixtureFit.MMAP
final MatrixCell
Ret.pfqnEstimate.P_1
final MatrixCell
Ret.pfqnEstimate.Q_1
Modifier and TypeFieldDescriptionRet.mamAPH2Fit.APHS
Map<Integer[],
MatrixCell> Ret.mamMMAPMixtureFit.PHs
ModifierConstructorDescriptionpfqnEstimate
(MatrixCell Q_1, MatrixCell P_1, Matrix PB_1, Matrix T_1) -
Uses of MatrixCell in jline.lang
-
Uses of MatrixCell in jline.lang.processes
Modifier and TypeMethodDescriptionMAP.getProcess()
MarkedMMPP.getProcess()
Markovian.getProcess()
PH.getProcess()
MAP.getRenewalProcess()
ModifierConstructorDescriptionMAP
(MatrixCell map) MarkedMAP
(MatrixCell mmap) MarkedMMPP
(MatrixCell mmap) -
Uses of MatrixCell in jline.lib.thirdparty
Modifier and TypeMethodDescriptionBUTOOLS.MMAPPH1FCFS
(MatrixCell D, Map<Integer, Matrix> sigma, Map<Integer, Matrix> S, Integer numOfQLMoms, Integer numOfQLProbs, Integer numOfSTMoms, Matrix stDistr, Boolean stDistrME, Boolean stDistrPH, Double prec, Matrix classes_) BUTOOLS.MMAPPH1NPPR
(MatrixCell D, MatrixCell sigma, MatrixCell S, Integer numOfQLMoms, Integer numOfQLProbs, Integer numOfSTMoms, Matrix stCdfPoints, Double prec, Integer erlMaxOrder_, Matrix classes_) -
Uses of MatrixCell in jline.solvers.mam
Modifier and TypeMethodDescriptionSolverMAM.solver_mam_passage_time
(NetworkStruct sn, Map<Integer, Map<Integer, MatrixCell>> PH) Modifier and TypeMethodDescriptionSolverMAM.solver_mam_passage_time
(NetworkStruct sn, Map<Integer, Map<Integer, MatrixCell>> PH) -
Uses of MatrixCell in jline.util