|
LINE Solver
MATLAB API documentation
|
MVA, convolution, and normalizing constant methods.
The pfqn module contains algorithms for product-form queueing networks, including Mean Value Analysis (MVA), convolution, and normalizing constant methods.
Description: Approximate Queue Length (AQL) algorithm for product-form networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| TOL | Tolerance for convergence. |
| MAXITER | Maximum number of iterations. |
| QN0 | Initial guess for queue lengths. |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization. |
| RN | Residence times. |
| numIters | Number of iterations. |
| AN | Average arrival rate at nodes. |
Description: Bard-Schweitzer approximate MVA for FCFS scheduling with weighted priorities.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector (default: zeros). |
| tol | Convergence tolerance (default: 1e-6). |
| maxiter | Maximum number of iterations (default: 1000). |
| QN | Initial queue length matrix (default: uniform distribution). |
| weight | Weight matrix for relative priorities (default: ones). |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization. |
| RN | Residence times. |
| it | Number of iterations performed. |
Description: Bard-Schweitzer Approximate Mean Value Analysis (MVA).
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| tol | Tolerance for convergence. |
| maxiter | Maximum number of iterations. |
| QN0 | Initial guess for queue lengths. |
| type | Scheduling strategy type (default: PS). |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization. |
| RN | Residence times. |
| it | Number of iterations performed. |
Description: Convolution Algorithm for exact normalizing constant computation.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
Returns:
| Name | Description |
|---|---|
| Gn | Normalizing constant. |
| lGn | Logarithm of the normalizing constant. |
Description: AMVA-QD class-dependence function for queue-dependent scaling.
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: CoMoM algorithm for computing the normalizing constant.
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: CoMoM for repairman model with load-dependent service rates.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| mu | Load-dependent rate matrix (MxNt matrix). |
| options | Solver options. |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| lG | Logarithm of normalizing constant. |
| prob | State probability distribution. |
Description: CoMoM (Convolution Method of Moments) for finite repairman model.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| m | Replication factor (default: 1). |
| atol | Absolute tolerance for numerical computations. |
Returns:
| Name | Description |
|---|---|
| lG | Logarithm of normalizing constant. |
| lGbasis | Logarithm of basis functions. |
Description: CoMoM for multiserver repairman model.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| m | Replication factor (default: 1). |
| S | Number of servers at queueing stations. |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| lG | Logarithm of normalizing constant. |
| prob | State probability distribution. |
Description: Original CoMoM implementation for finite repairman model.
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Multiserver Linearizer approximation (Conway 1989).
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| nservers | Number of servers per station. |
| type | Scheduling strategy type per station (default: FCFS). |
| tol | Convergence tolerance (default: 1e-8). |
| maxiter | Maximum number of iterations (default: 1000). |
Returns:
| Name | Description |
|---|---|
| Q | Mean queue lengths. |
| U | Utilization. |
| R | Residence times. |
| C | Cycle times. |
| X | System throughput. |
| totiter | Total number of iterations. |
Description: Cubature method for normalizing constant using Grundmann-Moeller rules.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix (MxR). |
| N | Population vector (1xR). |
| Z | Think time vector (1xR). |
| order | Degree of cubature rule (default: ceil((sum(N)-1)/2)). |
| atol | Absolute tolerance (default: 1e-8). |
Returns:
| Name | Description |
|---|---|
| Gn | Estimated normalizing constant. |
| lGn | Logarithm of normalizing constant. |
Description: Extended generalized fixed-point Linearizer approximation.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| type | Scheduling strategy type per station. |
| tol | Convergence tolerance (default: 1e-8). |
| maxiter | Maximum number of iterations (default: 1000). |
| alpha | Per-class scaling exponent vector. |
Returns:
| Name | Description |
|---|---|
| Q | Mean queue lengths. |
| U | Utilization. |
| W | Waiting times. |
| C | Cycle times. |
| X | System throughput. |
| totiter | Total iterations performed. |
Description: Generate load-dependent rates for functional server model f(n)=n+c.
Syntax:
Parameters:
| Name | Description |
|---|---|
| alpha | Rate parameters (Mx N matrix). |
| c | Constant offset parameter (default: auto-determined). |
Returns:
| Name | Description |
|---|---|
| mu | Load-dependent service rates. |
| c | Determined offset constant. |
Description: Generalized fixed-point Linearizer with uniform scaling exponent.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| type | Scheduling strategy type per station. |
| tol | Convergence tolerance. |
| maxiter | Maximum number of iterations. |
| alpha | Uniform scaling exponent for all classes. |
Returns:
| Name | Description |
|---|---|
| Q | Mean queue lengths. |
| U | Utilization. |
| W | Waiting times. |
| C | Cycle times. |
| X | System throughput. |
| totiter | Total iterations performed. |
Description: Exact normalizing constant for load-dependent queueing networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix (MxR). |
| N | Population vector (1xR). |
| mu | Load-dependent rate matrix (Mx sum(N)). |
| options | Solver options. |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| lG | Logarithm of normalizing constant. |
Description: Exact normalizing constant for single-class load-dependent models.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand vector (Mx1). |
| N | Population (scalar). |
| mu | Load-dependent rate matrix (MxN). |
| options | Solver options. |
Returns:
| Name | Description |
|---|---|
| lG | Logarithm of normalizing constant. |
| G | Normalizing constant. |
Description: Normalizing constant using Grundmann-Moeller quadrature.
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Compute joint queue-length probability distribution.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| m | Cache capacity |
Returns:
| Name | Description |
|---|---|
| F | Flow or throughput values |
| A | Absorption matrix or aggregate matrix |
Description: Knessl-Tier asymptotic expansion for normalizing constant.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector (default: zeros). |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| lG | Logarithm of normalizing constant. |
| X | System throughput. |
| Q | Mean queue lengths. |
Description: Laplace approximation for normalizing constant.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
Returns:
| Name | Description |
|---|---|
| logI | Logarithm of normalizing constant approximation. |
Description: Convolution algorithm for 2-station LCFS queueing networks
Syntax:
Parameters:
| Name | Description |
|---|---|
| alpha | Service rates at LCFS station (1xR vector). |
| beta | Service rates at LCFS-PR station (1xR vector). |
| N | Population vector (default: ones(1,R)). |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| V | Auxiliary normalization term. |
Description: Exact MVA for 2-station LCFS queueing networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| alpha | Service rates at LCFS station (1xR vector). |
| beta | Service rates at LCFS-PR station (1xR vector). |
| N | Population vector (default: ones(1,R)). |
Returns:
| Name | Description |
|---|---|
| T | Throughput vector. |
| Q | Mean queue lengths (2xR matrix). |
| U | Utilization (2xR matrix). |
| B | Back probability matrix (2xR). |
Description: Logistic expansion (LE) asymptotic approximation for normalizing constant.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix (MxR). |
| N | Population vector (1xR). |
| Z | Think time vector (1xR). |
Returns:
| Name | Description |
|---|---|
| Gn | Estimated normalizing constant. |
| lGn | Logarithm of normalizing constant. |
Description: Linearizer approximation for single-server stations.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| type | Scheduling strategy type per station. |
| tol | Convergence tolerance. |
| maxiter | Maximum number of iterations. |
Returns:
| Name | Description |
|---|---|
| Q | Mean queue lengths. |
| U | Utilization. |
| W | Waiting times. |
| C | Cycle times. |
| X | System throughput. |
| totiter | Total iterations performed. |
Description: Multiserver Linearizer (Krzesinski/Conway/De Souza-Muntz).
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| nservers | Number of servers per station. |
| type | Scheduling strategy per station (default: PS). |
| tol | Convergence tolerance (default: 1e-8). |
| maxiter | Maximum number of iterations (default: 1000). |
Returns:
| Name | Description |
|---|---|
| Q | Mean queue lengths. |
| U | Utilization. |
| R | Residence times. |
| C | Cycle times. |
| X | System throughput. |
| totiter | Total iterations performed. |
Description: Linearizer for mixed open/closed queueing networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| lambda | Arrival rate vector (inf for closed classes). |
| L | Service demand matrix. |
| N | Population vector (inf for open classes). |
| Z | Think time vector. |
| nservers | Number of servers per station. |
| type | Scheduling strategy per station. |
| tol | Convergence tolerance (default: 1e-8). |
| maxiter | Maximum iterations (default: 1000). |
| method | Linearizer variant ('lin', 'gflin', 'egflin', default: 'egflin'). |
Returns:
| Name | Description |
|---|---|
| QN | Mean queue lengths. |
| UN | Utilization. |
| WN | Waiting times. |
| CN | Cycle times. |
| XN | System throughput. |
| totiter | Total iterations. |
Description: AMVA-QD load and queue-dependent scaling function.
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Logistic sampling approximation for normalizing constant.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix (MxR). |
| N | Population vector (1xR). |
| Z | Think time vector (1xR). |
| I | Number of samples (default: 1e5). |
Returns:
| Name | Description |
|---|---|
| Gn | Estimated normalizing constant. |
| lGn | Logarithm of normalizing constant. |
Description: Monte Carlo Integration (MCI) for normalizing constant.
Syntax:
Parameters:
| Name | Description |
|---|---|
| D | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| I | Number of samples (default: 1e5). |
| variant | MCI variant ('mci', 'imci', 'rm', default: 'imci'). |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant estimate. |
| lG | Logarithm of normalizing constant. |
| lZ | Individual random sample log values. |
Description: McKenna-Mitra integral with Gauss-Laguerre quadrature.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand vector. |
| N | Population vector. |
| Z | Think time vector. |
| m | Replication factor (default: 1). |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| lG | Logarithm of normalizing constant. |
Description: McKenna-Mitra integral with Gauss-Legendre quadrature.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand vector. |
| N | Population vector. |
| Z | Think time vector. |
| m | Replication factor (default: 1). |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| lG | Logarithm of normalizing constant. |
Description: McKenna-Mitra integral form for repairman models using MATLAB integral.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand vector. |
| N | Population vector. |
| Z | Think time vector. |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| lG | Logarithm of normalizing constant. |
Description: Monte Carlo sampling for repairman models using McKenna-Mitra form.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand vector. |
| N | Population vector. |
| Z | Think time vector. |
| samples | Number of samples. |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant estimate. |
| lG | Logarithm of normalizing constant. |
Description: Compute load-dependent rates for m identical c-server FCFS stations.
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Shift load-dependent service rate vector by removing first element.
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Exact MVA for load-dependent closed queueing networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| mu | Load-dependent rate matrix (MxNt). |
| stabilize | Force non-negative probabilities (default: true). |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization. |
| CN | Cycle times. |
| lGN | Logarithm of normalizing constant evolution. |
| isNumStable | Numerical stability flag. |
| pi | Marginal queue-length probabilities. |
Description: Load-dependent MVA for multiserver mixed networks (wrapper for pfqn_mvaldmx).
Syntax:
Parameters:
| Name | Description |
|---|---|
| lambda | Arrival rate vector. |
| D | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| S | Number of servers per station. |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization (adjusted for multiservers). |
| CN | Cycle times. |
| lGN | Logarithm of normalizing constant. |
Description: Compute effective capacity terms for MVALDMX solver.
Syntax:
Parameters:
| Name | Description |
|---|---|
| lambda | Arrival rate vector. |
| D | Service demand matrix. |
| mu | Load-dependent rate matrix. |
Returns:
| Name | Description |
|---|---|
| EC | Effective capacity matrix. |
| E | E-function values. |
| Eprime | E-prime function values. |
| Lo | Open class load vector. |
Description: Load-dependent MVA for mixed open/closed networks with limited load dependence.
Syntax:
Parameters:
| Name | Description |
|---|---|
| lambda | Arrival rate vector. |
| D | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| mu | Load-dependent rate matrix. |
| S | Number of servers per station. |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization. |
| CN | Cycle times. |
| lGN | Logarithm of normalizing constant. |
| Pc | Marginal queue-length probabilities. |
Description: Exact Mean Value Analysis (MVA) for product-form queueing networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix (M x R). |
| N | Population vector (1 x R). |
| Z | Think time vector (1 x R). |
| mi | (Optional) Server multiplicity vector (1 x M). Default: single servers. |
Returns:
| Name | Description |
|---|---|
| XN | System throughput (1 x R). |
| QN | Mean queue length (M x R). |
| UN | Utilization (M x R). |
| CN | Residence time (M x R). |
| lGN | Logarithm of the normalizing constant. |
Description: General-purpose MVA for mixed networks with multiserver nodes.
Syntax:
Parameters:
| Name | Description |
|---|---|
| lambda | Arrival rate vector. |
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| mi | Queue replication factors (default: ones). |
| S | Number of servers per station (default: ones). |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization. |
| CN | Cycle times. |
| lG | Logarithm of normalizing constant. |
Description: Exact MVA for mixed open/closed single-server networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| lambda | Arrival rate vector. |
| D | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| mi | Queue replication factors (default: ones). |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization. |
| CN | Cycle times. |
| lGN | Logarithm of normalizing constant. |
Description: Normalizing constant for LCFS queueing networks
Syntax:
Parameters:
| Name | Description |
|---|---|
| alpha | Service rates at LCFS station (1xR vector). |
| beta | Service rates at LCFS-PR station (1xR vector). |
| N | Population vector (default: ones(1,R)). |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| Ax | Cell array of A matrices for each state. |
Description: Normalizing constant for load-dependent closed networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| mu | Load-dependent rate matrix. |
| options | Optional solver parameters. |
Returns:
| Name | Description |
|---|---|
| lG | Logarithm of normalizing constant. |
| G | Normalizing constant. |
| method | Method used for computation. |
Description: Computes the normalizing constant of a product-form queueing network.
Syntax:
Parameters:
| Name | Description |
|---|---|
| lambda | Arrival rates for open classes. |
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| options | Optional arguments for solver options (SolverNC.defaultOptions). |
Returns:
| Name | Description |
|---|---|
| lG | Logarithm of the normalizing constant. |
| X | System throughputs. |
| Q | Mean queue lengths. |
| method | The specific method used for computation (e.g., 'exact', 'ca', 'recal'). |
Description: Sanitize and preprocess network parameters for NC solvers.
Syntax:
Parameters:
| Name | Description |
|---|---|
| lambda | Arrival rate vector. |
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| atol | Absolute tolerance. |
Returns:
| Name | Description |
|---|---|
| lambda | Sanitized arrival rates. |
| L | Sanitized service demands (rescaled). |
| N | Sanitized populations. |
| Z | Sanitized think times (rescaled). |
| lGremaind | Log normalization factor from removed classes. |
Description: Normalizing constant via Normal Radius-Logistic (NRL) approximation.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| alpha | Load-dependent rate matrix. |
| options | Solver options. |
Returns:
| Name | Description |
|---|---|
| lG | Logarithm of normalizing constant. |
Description: Normalizing constant via Normal Radius-Probit (NRP) approximation.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| alpha | Load-dependent rate matrix. |
| options | Solver options. |
Returns:
| Name | Description |
|---|---|
| lG | Logarithm of normalizing constant. |
Description: PANACEA (PAth-based Normal Approximation for Closed networks Estimation Algorithm).
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
Returns:
| Name | Description |
|---|---|
| Gn | Normalizing constant. |
| lGn | Logarithm of normalizing constant. |
Description: Product-form CoMoM for 2-station repairman model (queue + delay).
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand vector. |
| N | Population vector. |
| Z | Think time vector. |
| mu | Load-dependent rates (optional). |
| m | Replication factor (default: 1). |
Returns:
| Name | Description |
|---|---|
| pk | Marginal state probabilities. |
| lG | Logarithm of normalizing constant. |
| G | Normalizing constant. |
| T | Transfer matrices. |
| F | Product transfer matrix. |
| B | Combined transfer matrix. |
Description: Proportionally fair allocation approximation (Walton 2009).
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant estimate. |
| lG | Logarithm of normalizing constant. |
| Xasy | Asymptotic throughput vector. |
Description: Queue-Dependent (QD) approximate MVA solver.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| ga | Gamma scaling function (default: ones). |
| be | Beta scaling function (default: ones). |
| Q0 | Initial queue length estimate (optional). |
Returns:
| Name | Description |
|---|---|
| Q | Mean queue lengths. |
| X | System throughput. |
| U | Utilization. |
| iter | Number of iterations performed. |
Description: Lower asymptotic bound on queue length (Zahorjan-Gittelsohn-Bryant).
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Upper asymptotic bound on queue length (Zahorjan-Gittelsohn-Bryant).
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Reduced Decomposition (RD) method for load-dependent networks.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector. |
| mu | Load-dependent rate matrix. |
| options | Solver options. |
Returns:
| Name | Description |
|---|---|
| lGN | Logarithm of normalizing constant. |
| Cgamma | Gamma correction factor. |
Description: RECAL (REcursive CALculation) method for normalizing constant.
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand matrix. |
| N | Population vector. |
| Z | Think time vector (default: zeros). |
| m0 | Initial multiplicity vector (default: ones). |
Returns:
| Name | Description |
|---|---|
| G | Normalizing constant. |
| lG | Logarithm of normalizing constant. |
Description: Schmidt's exact MVA for networks with general scheduling disciplines.
Syntax:
Parameters:
| Name | Description |
|---|---|
| D | Service demand matrix. |
| N | Population vector. |
| S | Number of servers per station (matrix or vector). |
| sched | Scheduling discipline per station. |
Returns:
| Name | Description |
|---|---|
| XN | System throughput. |
| QN | Mean queue lengths. |
| UN | Utilization. |
| CN | Cycle times. |
| T | Results table. |
Description: Single Queue Network Iteration (SQNI) approximate solver.
Syntax:
Parameters:
| Name | Description |
|---|---|
| N | Population vector. |
| L | Service demand vector. |
| Z | Think time vector. |
Returns:
| Name | Description |
|---|---|
| Q | Mean queue lengths. |
| U | Utilization. |
| X | System throughput. |
Description: Heuristic sojourn time distribution for multiserver FCFS nodes (McKenna 1987 variant).
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Sojourn time distribution for multiserver FCFS nodes (McKenna 1987).
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Lower asymptotic bound on throughput (Zahorjan-Balanced).
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand vector. |
| N | Population. |
| Z | Think time. |
Returns:
| Name | Description |
|---|---|
| XN | Lower bound on throughput. |
Description: Upper asymptotic bound on throughput (Zahorjan-Balanced).
Syntax:
Parameters:
| Name | Description |
|---|---|
| L | Service demand vector. |
| N | Population. |
| Z | Think time. |
Returns:
| Name | Description |
|---|---|
| XN | Upper bound on throughput. |
Description: Lower asymptotic bound on throughput (Zahorjan-Gittelsohn-Schweitzer-Bryant).
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|
Description: Upper asymptotic bound on throughput (Zahorjan-Gittelsohn-Schweitzer-Bryant).
Syntax:
Parameters:
| Name | Description |
|---|
Returns:
| Name | Description |
|---|