LINE Solver
MATLAB API documentation
Loading...
Searching...
No Matches
Cache Algorithms

Cache replacement policies and performance analysis.

The cache module provides algorithms for analyzing cache systems with various replacement policies (LRU, FIFO, RR, etc.) and item popularity distributions.

Function List

  • cache_erec - Recursive computation of the normalizing constant for cache models
  • cache_gamma_lp - Computes gamma parameters for cache models using linear programming
  • cache_miss_fpi - Computes miss rates using fixed-point iteration
  • cache_miss - Cache miss rate computation
  • cache_miss_spm - Computes miss rates using saddle-point method
  • cache_mva - Exact Mean Value Analysis for caches
  • cache_mva_miss - Computes miss rates using Mean Value Analysis
  • cache_prob_erec - Computes cache hit probabilities using recursive method
  • cache_prob_fpi - Computes cache hit probabilities using fixed-point iteration
  • cache_prob_spm - Computes cache hit probabilities using saddle-point method
  • cache_rrm_meanfield_ode - ODE function for RRM mean-field cache dynamics
  • cache_spm - Computes normalizing constant using saddle-point method
  • cache_t_hlru - Computes characteristic times for hierarchical LRU cache levels
  • cache_t_lrum - Computes characteristic times for LRU(m) cache levels
  • cache_ttl_hlru - Computes steady-state probabilities for TTL-based hierarchical LRU cache
  • cache_ttl_lrua - Computes steady-state probabilities for TTL-LRU cache with arrivals
  • cache_ttl_lrum - Computes steady-state probabilities for TTL-based LRU(m) cache
  • cache_xi_fp - Fixed-point iteration for computing cache performance metrics
  • cache_xi_iter - Computes Lagrange multipliers using Gast-van Houdt fixed-point iteration

cache_erec

Description: Recursive computation of the normalizing constant for cache models

Syntax:

cache_erec(...)

cache_gamma_lp

Description: Computes gamma parameters for cache models using linear programming

Syntax:

[gamma, u, n, h] = cache_gamma_lp(lambda, R)

Parameters:

NameDescription
lambdaArrival rate(s)
RNumber of classes or R matrix

Returns:

NameDescription
gammaItem popularity or rate parameters
uUtilization or solution vector
nNumber of items, nodes, or states
hNumber of hierarchies or layers

cache_miss_fpi

Description: Computes miss rates using fixed-point iteration

Syntax:

[M, MU, MI, pi0] = cache_miss_fpi(gamma, m, lambda)

Parameters:

NameDescription
gammaItem popularity probabilities
mCache capacity
lambdaArrival rate(s)

Returns:

NameDescription
MGlobal miss rate
MUPer-user miss rate
MIPer-item miss rate
pi0Per-item miss probability

cache_miss

Description: Cache miss rate computation

Syntax:

[M, MU, MI, pi0] = cache_miss(gamma, m, lambda)

Parameters:

NameDescription
gammaItem popularity probabilities
mCache capacity
lambdaArrival rate(s)

Returns:

NameDescription
MGlobal miss rate
MUPer-user miss rate
MIPer-item miss rate
pi0Per-item miss probability

cache_miss_spm

Description: Computes miss rates using saddle-point method

Syntax:

[M, MU, MI, pi0, lE] = cache_miss_spm(gamma, m, lambda)

Parameters:

NameDescription
gammaItem popularity probabilities
mCache capacity
lambdaArrival rate(s)

Returns:

NameDescription
MGlobal miss rate
MUPer-user miss rate
MIPer-item miss rate
pi0Per-item miss probability
lELogarithm of partition function

cache_mva

Description: Exact Mean Value Analysis for caches

Syntax:

[pi, pi0, pij, x, u, E] = cache_mva(gamma, m)

Parameters:

NameDescription
gammaItem popularity probabilities
mCache capacity

Returns:

NameDescription
piSteady-state probability distribution
pi0Per-item miss probability
pijPairwise probabilities
xState vector or solution
uUtilization or solution vector
EExpected value or partition function

cache_mva_miss

Description: Computes miss rates using Mean Value Analysis

Syntax:

[M, Mk] = cache_mva_miss(p, m, R)

Parameters:

NameDescription
pProbability vector or parameter
mCache capacity
RNumber of classes or R matrix

Returns:

NameDescription
MGlobal miss rate
Mkk-th moment

cache_prob_erec

Description: Computes cache hit probabilities using recursive method

Syntax:

cache_prob_erec(...)

cache_prob_fpi

Description: Computes cache hit probabilities using fixed-point iteration

Syntax:

cache_prob_fpi(...)

cache_prob_spm

Description: Computes cache hit probabilities using saddle-point method

Syntax:

cache_prob_spm(...)

cache_rrm_meanfield_ode

Description: ODE function for RRM mean-field cache dynamics

Syntax:

cache_rrm_meanfield_ode(...)

cache_spm

Description: Computes normalizing constant using saddle-point method

Syntax:

[Z, lZ, xi] = cache_spm(gamma, m, xi0)

Parameters:

NameDescription
gammaItem popularity probabilities
mCache capacity
xi0Initial guess for Lagrange multipliers

Returns:

NameDescription
ZThink times or partition function
lZLogarithm of partition function
xiLagrange multipliers

cache_t_hlru

Description: Computes characteristic times for hierarchical LRU cache levels

Syntax:

cache_t_hlru(...)

cache_t_lrum

Description: Computes characteristic times for LRU(m) cache levels

Syntax:

cache_t_lrum(...)

cache_ttl_hlru

Description: Computes steady-state probabilities for TTL-based hierarchical LRU cache

Syntax:

cache_ttl_hlru(...)

cache_ttl_lrua

Description: Computes steady-state probabilities for TTL-LRU cache with arrivals

Syntax:

cache_ttl_lrua(...)

cache_ttl_lrum

Description: Computes steady-state probabilities for TTL-based LRU(m) cache

Syntax:

cache_ttl_lrum(...)

cache_xi_fp

Description: Fixed-point iteration for computing cache performance metrics

Syntax:

[xi, pi0, pij, it] = cache_xi_fp(gamma, m, xi)

Parameters:

NameDescription
gammaItem popularity probabilities
mCache capacity
xiLagrange multipliers

Returns:

NameDescription
xiLagrange multipliers
pi0Per-item miss probability
pijPairwise probabilities
itNumber of iterations performed

cache_xi_iter

Description: Computes Lagrange multipliers using Gast-van Houdt fixed-point iteration

Syntax:

cache_xi_iter(...)