API Documentation
This section provides detailed API documentation for all LINE Solver Python modules.
API Sections:
- Core Modules
- Cache Algorithms
cache_mva()cache_prob_asy()cache_gamma_lp()cache_spm()cache_xi_fp()cache_prob_erec()cache_prob_fpi()cache_prob_spm()cache_erec()cache_t_hlru()cache_t_lrum()cache_t_lrum_map()cache_ttl_hlru()cache_ttl_lrua()cache_ttl_lrum()cache_ttl_lrum_map()cache_ttl_tree()cache_xi_bvh()cache_miss()cache_mva_miss()cache_miss_asy()cache_erec_aux()cache_miss_spm()cache_par()cache_t_hlru_aux()cache_t_lrum_aux()cache_gamma_approx()cache_opt_capacity()cache_gamma()cache_miss_fpi()cache_rrm_meanfield_ode()cache_rayint()cache_miss_rayint()cache_prob_rayint()
- Loss Networks
- Layered Stochastic Networks
- Markov Chain Utilities
- Matrix-Analytic Methods
map_pie()map_mean()map_var()map_scv()map_skew()map_moment()map_lambda()map_acf()map_acfc()map_idc()map_gamma()map_gamma2()map_cdf()map_piq()map_embedded()map_count_mean()map_count_var()map_varcount()map2_fit()aph_fit()aph2_fit()aph2_fitall()aph2_adjust()mmpp2_fit()mmpp2_fit1()mmap_mixture_fit()mmap_mixture_fit_mmap()mamap2m_fit_gamma_fb_mmap()mamap2m_fit_gamma_fb()map_exponential()map_erlang()map_hyperexp()map_scale()map_normalize()map_timereverse()map_mark()map_infgen()map_super()map_sum()map_sumind()map_checkfeasible()map_isfeasible()map_feastol()map_largemap()aph2_assemble()ph_reindex()map_rand()map_randn()mmap_lambda()mmap_count_mean()mmap_count_var()mmap_count_idc()mmap_idc()mmap_sigma2()mmap_exponential()mmap_mixture()mmap_super()mmap_super_safe()mmap_compress()mmap_normalize()mmap_scale()mmap_timereverse()mmap_hide()mmap_shorten()mmap_maps()mmap_pc()mmap_forward_moment()mmap_backward_moment()mmap_cross_moment()mmap_sample()mmap_rand()map_sample()mmap_count_lambda()mmap_isfeasible()mmap_mark()aph_bernstein()map_jointpdf_derivative()map_ccdf_derivative()qbd_R()qbd_R_logred()qbd_rg()map_pdf()map_prob()map_joint()map_mixture()map_max()map_renewal()map_stochcomp()qbd_mapmap1()qbd_raprap1()qbd_bmapbmap1()qbd_setupdelayoff()aph_simplify()randp()aph_rand()amap2_fit_gamma()mamap2m_fit_fb_multiclass()mmpp_rand()map_count_moment()map_kurt()mmap_sigma2_cell()amap2_adjust_gamma()amap2_fitall_gamma()mmpp2_fit_mu00()mmpp2_fit_mu11()mmpp2_fit_q01()mmpp2_fit_q10()assess_compression_quality()compress_adaptive()compress_autocorrelation()compress_spectral()compress_with_quality_control()qbd_G()ph_fit()ph_mean()ph_var()ph_pdf()ph_cdf()qbd_psif()qbd_psi()aph2_check_feasibility()aph2_canonical()map_cdf_derivative()map_rand_moment()qbd_solve()amap2_fit_gamma_map()amap2_fit_gamma_trace()aph2_fit_map()aph2_fit_trace()qbd_r()map_block()map_feasblock()map_kpc()map_pntiter()map_pntquad()map2mmpp()m3pp_rand()m3pp_interleave_fitc_theoretical()m3pp_interleave_fitc_trace()m3pp_superpos_fitc()m3pp_superpos_fitc_theoretical()maph2m_fit()maph2m_fitc_approx()maph2m_fitc_theoretical()maph2m_fit_mmap()maph2m_fit_multiclass()maph2m_fit_trace()mmap_embedded()mmap_count_mcov()mmap_issym()mmap_max()mmap_mixture_order2()mmap_modulate()mmap_pie()mmap_sigma()mmap_sum()mmpp2_fitc()mmpp2_fitc_approx()qbd_r_logred()mapqn_bnd_lr()mapqn_bnd_lr_mva()mapqn_bnd_lr_pf()mapqn_bnd_qr()mapqn_bnd_qr_delay()mapqn_bnd_qr_ld()mapqn_lpmodel()mapqn_parameters()mapqn_parameters_factory()mapqn_qr_bounds_bas()mapqn_qr_bounds_rsrd()m3pp22_fitc_approx_cov()mamap2m_coefficients()m3pp22_fitc_approx_cov_multiclass()m3pp22_interleave_fitc()m3pp2m_fitc()m3pp2m_fitc_approx()m3pp2m_fitc_approx_ag()m3pp2m_fitc_approx_ag_multiclass()m3pp2m_interleave()m3pp_interleave_fitc()mamap22_fit_gamma_fs_trace()mamap22_fit_multiclass()mamap2m_fit()mamap2m_fit_mmap()mamap2m_fit_trace()
- Non-Product-Form Networks
- Polling Systems
- Product-Form Queueing Networks
pfqn_ca()pfqn_panacea()pfqn_bs()pfqn_mva()pfqn_aql()pfqn_mvald()pfqn_mvaldms()pfqn_mvaldmx()pfqn_mvams()pfqn_mvamx()pfqn_gldsingle()pfqn_comomrm()pfqn_linearizer()pfqn_linearizerms()pfqn_linearizerpp()pfqn_linearizermx()pfqn_kt()pfqn_recal()pfqn_cub()pfqn_mmint2()pfqn_ls()pfqn_rd()pfqn_fnc()pfqn_propfair()pfqn_xia()pfqn_xzabalow()pfqn_xzabaup()pfqn_xzgsblow()pfqn_xzgsbup()pfqn_egflinearizer()pfqn_gflinearizer()pfqn_gld_complex()pfqn_gldsingle_complex()pfqn_mushift()pfqn_le_fpiZ()pfqn_le_hessian()pfqn_le_hessianZ()pfqn_lldfun()pfqn_mci()pfqn_mmint2_gausslegendre()pfqn_mmsample2()pfqn_nrl()pfqn_nrp()pfqn_stdf()pfqn_stdf_heur()pfqn_conwayms_core()pfqn_conwayms_estimate()pfqn_conwayms_forwardmva()pfqn_mu_ms_gnaux()pfqn_nc()pfqn_gld()pfqn_conwayms()pfqn_cdfun()pfqn_nca()pfqn_ncld()pfqn_pff_delay()pfqn_sqni()pfqn_qzgblow()pfqn_qzgbup()pfqn_nc_sanitize()pfqn_comomrm_ld()pfqn_mvaldmx_ec()pfqn_ab()pfqn_le()pfqn_le_fpi()pfqn_le_fpiz()pfqn_le_hessianz()pfqn_mom()pfqn_mu_ms()pfqn_procomom2()pfqn_schmidt()pfqn_lcfsqn_ca()pfqn_lcfsqn_mva()pfqn_lcfsqn_nc()
- Queueing Systems
qsys_mm1()qsys_mmk()qsys_gm1()qsys_mg1()qsys_gig1_approx_lin()qsys_gig1_approx_kk()qsys_gig1_approx_whitt()qsys_gig1_approx_allencunneen()qsys_gig1_approx_heyman()qsys_gig1_approx_kobayashi()qsys_gig1_approx_marchal()qsys_gig1_ubnd_kingman()qsys_gigk_approx()qsys_gigk_approx_kingman()qsys_gg1()qsys_gig1_approx_gelenbe()qsys_gig1_approx_kimura()qsys_gig1_approx_klb()qsys_gig1_approx_myskja()qsys_gig1_approx_myskja2()qsys_gig1_lbnd()qsys_gigk_approx_cosmetatos()qsys_gigk_approx_whitt()qsys_mg1k_loss()qsys_mmkk()qsys_mmm()qsys_mminf()qsys_mginf()qsys_mm1k_loss()qsys_mg1k_loss_mgs()
- Reinforcement Learning
- Stochastic Network Utilities
sn_deaggregate_chain_results()sn_get_arvr_from_tput()sn_get_demands_chain()sn_get_node_arvr_from_tput()sn_get_node_tput_from_tput()sn_get_product_form_chain_params()sn_get_product_form_params()sn_get_residt_from_respt()sn_get_state_aggr()sn_is_state_valid()sn_refresh_visits()sn_has_class_switching()sn_has_fork_join()sn_has_load_dependence()sn_has_multi_server()sn_has_priorities()sn_has_product_form()sn_has_closed_classes()sn_has_open_classes()sn_has_mixed_classes()sn_has_multi_chain()sn_is_closed_model()sn_is_open_model()sn_is_mixed_model()sn_has_product_form_not_het_fcfs()sn_print_routing_matrix()sn_has_fcfs()sn_has_lcfs()sn_has_lcfspr()sn_has_ps()sn_has_dps()sn_has_gps()sn_has_inf()sn_has_hol()sn_has_sjf()sn_has_ljf()sn_has_sept()sn_has_lept()sn_has_siro()sn_has_dps_prio()sn_has_gps_prio()sn_has_ps_prio()sn_has_single_class()sn_has_single_chain()sn_has_fractional_populations()sn_has_multiple_closed_classes()sn_has_multiclass_fcfs()sn_has_multiclass_heter_fcfs()sn_has_multiclass_heter_exp_fcfs()sn_has_homogeneous_scheduling()sn_has_multi_class()sn_chain_analysis()sn_get_demands()sn_get_visits_chain()sn_check_balance()sn_check_consistency()sn_check_feasibility()sn_has_blocking()sn_has_caches()sn_has_delays()sn_has_finite_capacity()sn_has_loadindep()sn_has_state_dependent()sn_validate_model()sn_has_polling()sn_has_rr()sn_has_slc()sn_has_snc()sn_has_srpt()sn_has_state_dependence()sn_print()sn_summary()sn_validate()sn_get_arv_r_from_tput()sn_get_node_arv_r_from_tput()sn_has_lcfs_pr()sn_has_multi_class_fcfs()sn_has_multi_class_heter_exp_fcfs()sn_has_multi_class_heter_fcfs()sn_is_population_model()sn_rtnodes_to_rtorig()
- Utilities and Constants
Overview
Core Modules - Networks, nodes, classes, distributions, solvers
Cache Algorithms - Cache performance analysis
Loss Networks - Analysis of networks with blocking
Layered Stochastic Networks - Layered queueing network analysis
Markov Chain Utilities - CTMC and DTMC analysis tools
Matrix-Analytic Methods - QBD processes and matrix-analytic solutions
Non-Product-Form Networks - Approximations for intractable queueing networks
Polling Systems - Analysis of gated, exhaustive, and k-limited polling
Product-Form Queueing Networks - MVA, convolution, and normalizing constant methods
Queueing Systems - Single-station queueing system analysis
Reinforcement Learning - RL utilities for queueing control
Stochastic Network Utilities - Network analysis and transformation utilities
Utilities and Constants - Helper functions, constants, and enumerations
Module Locations
Category |
Python Path |
Description |
|---|---|---|
Cache API |
line_solver.api.cache |
Cache analysis algorithms |
Constants |
line_solver.constants |
Enumerations and global constants |
Core |
line_solver.lang |
Network, Node, and JobClass definitions |
Distributions |
line_solver.distributions |
Exp, Erlang, PH, MAP, etc. |
Layered Networks |
line_solver.layered |
LayeredNetwork, Task, Activity |
LossN API |
line_solver.api.lossn |
Loss network algorithms |
LSN API |
line_solver.api.lsn |
Layered stochastic network utilities |
MAM API |
line_solver.api.mam |
Matrix-analytic methods |
MC API |
line_solver.api.mc |
Markov chain analysis |
NPFQN API |
line_solver.api.npfqn |
Non-product-form network approximations |
PFQN API |
line_solver.api.pfqn |
Product-form queueing network algorithms |
Polling API |
line_solver.api.polling |
Polling system algorithms |
Qsys API |
line_solver.api.qsys |
Single queueing system formulas |
RL API |
line_solver.api.rl |
Reinforcement learning utilities |
SN API |
line_solver.api.sn |
Stochastic network utilities |
Solvers |
line_solver.solvers |
MVA, CTMC, Fluid, MAM, etc. |
License
Copyright (c) 2012-2026, QORE Lab, Imperial College London All rights reserved.