Package jline.solvers.des.handlers
Class Solver_ssjKt
-
- All Implemented Interfaces:
public final class Solver_ssjKt
-
-
Method Summary
Modifier and Type Method Description final static DESResultsolver_ssj(NetworkStruct sn, SolverOptions options, Collector stream)final static DESResultsolver_ssj_transient(NetworkStruct sn, SolverOptions options, Collector stream)final static Triple<Double, Double, Integer>computeOBMStatistics(List<Double> observations, Integer batchSize)Compute OBM (Overlapping Batch Means) statistics with 50% overlap. final static DoublegetTCriticalValue(Double confintLevel, Integer df)Get t-distribution critical value for given confidence level and degrees of freedom. final static Triple<Double, Double, Integer>computeStandardBatchMeansStatistics(List<Double> observations, Integer batchSize)Compute standard (non-overlapping) batch means statistics. -
-
Method Detail
-
solver_ssj
final static DESResult solver_ssj(NetworkStruct sn, SolverOptions options, Collector stream)
- Parameters:
sn- Network structure representing the queueing network modeloptions- Solver configuration options (samples = max events, seed, verbose, etc.- Returns:
DESResult with steady-state performance metrics
-
solver_ssj_transient
final static DESResult solver_ssj_transient(NetworkStruct sn, SolverOptions options, Collector stream)
- Parameters:
sn- Network structure representing the queueing network modeloptions- Solver configuration options (timespan defines the analysis interval)- Returns:
DESResult with transient time-series metrics in QNt, UNt, TNt arrays
-
computeOBMStatistics
final static Triple<Double, Double, Integer> computeOBMStatistics(List<Double> observations, Integer batchSize)
Compute OBM (Overlapping Batch Means) statistics with 50% overlap. Exposed as top-level function for testing.
- Parameters:
observations- List of observations to analyzebatchSize- Size of each batch- Returns:
Triple(grandMean, stdError, effectiveDf) or null if insufficient data
-
getTCriticalValue
final static Double getTCriticalValue(Double confintLevel, Integer df)
Get t-distribution critical value for given confidence level and degrees of freedom. Exposed as top-level function for testing.
- Parameters:
confintLevel- Confidence level (e.g., 0.df- Degrees of freedom- Returns:
Critical value from t-distribution
-
computeStandardBatchMeansStatistics
final static Triple<Double, Double, Integer> computeStandardBatchMeansStatistics(List<Double> observations, Integer batchSize)
Compute standard (non-overlapping) batch means statistics. Exposed as top-level function for testing comparison with OBM.
- Parameters:
observations- List of observations to analyzebatchSize- Size of each batch- Returns:
Triple(grandMean, stdError, effectiveDf) or null if insufficient data
-
-
-
-