Class APHKt

  • All Implemented Interfaces:

    
    public final class APHKt
    
                        
    • Constructor Detail

    • Method Detail

      • aph_simplify

         final static Pair<DoubleArray, Matrix> aph_simplify(DoubleArray a1, Matrix T1, DoubleArray a2, Matrix T2, Double p1, Double p2, ConvolutionPattern pattern)

        Simplifies/combines two APH distributions using a specified pattern.

        Parameters:
        a1 - Initial probability vector of first distribution
        T1 - Rate matrix of first distribution
        a2 - Initial probability vector of second distribution
        T2 - Rate matrix of second distribution
        p1 - Branch probability for first distribution (for BRANCH pattern)
        p2 - Branch probability for second distribution (for BRANCH pattern)
        pattern - Convolution pattern to use
        Returns:

        Pair of (combined alpha, combined T)

      • aph_convpara

         final static Pair<DoubleArray, Matrix> aph_convpara(List<Pair<DoubleArray, Matrix>> distributions)

        Performs convolution on parallel structure with any number of elements.

        Parameters:
        distributions - List of pairs (alpha, T) for each distribution
        Returns:

        Combined (alpha, T)

      • aph_convseq

         final static Pair<DoubleArray, Matrix> aph_convseq(List<Pair<DoubleArray, Matrix>> distributions)

        Performs convolution on sequential structure with any number of elements.

        Parameters:
        distributions - List of pairs (alpha, T) for each distribution
        Returns:

        Combined (alpha, T)

      • aph_rand

         final static MatrixCell aph_rand(Integer K)

        Generates a random APH (acyclic phase-type) distribution as a MAP.

        Parameters:
        K - Order of the APH distribution (default: 2)
        Returns:

        MAP representation {D0, D1}

      • aph_fit

         final static Pair<MatrixCell, Boolean> aph_fit(Double e1, Double e2, Double e3, Integer nmax)

        Fits an APH distribution to match first three moments.

        Implementation based on: A.Bobbio, A.Horvath, M.Telek, "Matching three moments with minimal acyclic phase type distributions", Stochastic Models 21:303-326, 2005.

        Parameters:
        e1 - First moment (mean)
        e2 - Second moment
        e3 - Third moment
        nmax - Maximum order to try (default: 10)
        Returns:

        Pair of (fitted MAP, isExact flag)

      • ph2hyper

         final static Pair<DoubleArray, DoubleArray> ph2hyper(MatrixCell PH)

        Converts a hyper-exponential PH distribution to its rate/probability form.

        Parameters:
        PH - Phase-type distribution as {D0, D1}
        Returns:

        Pair of (rates, probabilities)

      • hyper_rand

         final static DoubleArray hyper_rand(DoubleArray rates, DoubleArray probs, Integer nSamples)

        Generates random samples from a hyper-exponential distribution.

        Parameters:
        rates - Exponential rates
        probs - Selection probabilities
        nSamples - Number of samples
        Returns:

        Array of samples