Package jline.lib.SMC
Class QBD_ISKt
-
- All Implemented Interfaces:
public final class QBD_ISKt
-
-
Method Summary
Modifier and Type Method Description final static Map<String, Matrix>
QBD_IS(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_)
Invariant Subspace for Quasi-Birth-Death Markov Chains Akar, SohrabyDISCRETE TIME CASE: Computes the minimal nonnegative solution to the matrix equation G = A0 + A1 G + A2 G^2, where A0, A1 and A2 are square nonnegative matrices, with (A0+A1+A2) irreducible and stochasticCONTINUOUS TIME CASE: Computes the minimal nonnegative solution to the matrix equation 0 = A0 + A1 G + A2 G^2, where A0, A1 and A2 are square nonnegative matrices, with (A0+A1+A2) having row sums equal to zero -
-
Method Detail
-
QBD_IS
final static Map<String, Matrix> QBD_IS(Matrix A0, Matrix A1, Matrix A2, Integer MaxNumIt_, Integer Verbose_, String Mode_, Integer RAPComp_)
Invariant Subspace for Quasi-Birth-Death Markov Chains Akar, Sohraby
DISCRETE TIME CASE: Computes the minimal nonnegative solution to the matrix equation G = A0 + A1 G + A2 G^2, where A0, A1 and A2 are square nonnegative matrices, with (A0+A1+A2) irreducible and stochastic
CONTINUOUS TIME CASE: Computes the minimal nonnegative solution to the matrix equation 0 = A0 + A1 G + A2 G^2, where A0, A1 and A2 are square nonnegative matrices, with (A0+A1+A2) having row sums equal to zero
- Parameters:
A0
- transition matrix A0A1
- transition matrix A1A2
- transition matrix A2MaxNumIt_
- maximum number of iterations (default: 50)Verbose_
- verbose output flag (default: 0)Mode_
- solution mode: 'MSignStandard', 'MSignBalzer', 'Schur' (default: 'Schur')RAPComp_
- RAP computation flag (default: 0)- Returns:
map containing matrices G, R, and U
-
-
-
-