Package jline.api.polling
Class Polling_qsys_gatedKt
-
- All Implemented Interfaces:
public final class Polling_qsys_gatedKt
-
-
Method Summary
Modifier and Type Method Description final static DoubleArraypolling_qsys_gated(Array<MatrixCell> arvMAPs, Array<MatrixCell> svcMAPs, Array<MatrixCell> switchMAPs)Computes the exact mean waiting time solution for a polling system with open arrivals, where all queues use gated service discipline. -
-
Method Detail
-
polling_qsys_gated
final static DoubleArray polling_qsys_gated(Array<MatrixCell> arvMAPs, Array<MatrixCell> svcMAPs, Array<MatrixCell> switchMAPs)
Computes the exact mean waiting time solution for a polling system with open arrivals, where all queues use gated service discipline. The calculation is based on the equations provided by Takagi in ACM Computing Surveys, Vol. 20, No. 1, March 1988, eq (20).
- Parameters:
arvMAPs- an array of MatrixCell objects representing the arrival process MAPs.svcMAPs- an array of MatrixCell objects representing the service process MAPs.switchMAPs- an array of MatrixCell objects representing the switching times MAPs.- Returns:
a double array containing the mean waiting times for each queue in the system.
Example usage:
<pre> `MatrixCell[] A = new MatrixCell[2]; MatrixCell[] S = new MatrixCell[2]; MatrixCell[] C = new MatrixCell[2]; A[0] = map_exponential(1 / 0.6); A[1] = map_exponential(1 / 0.2); S[0] = map_exponential(1.0); S[1] = map_exponential(1.0); C[0] = map_exponential(1.0); C[1] = map_exponential(1.0); double[] W = polling_qsys_gated(A, S, C); new Matrix(W).print(); ` * </pre> *
-
-
-
-