Class Pfqn_bsKt
-
- All Implemented Interfaces:
public final class Pfqn_bsKt
-
-
Method Summary
Modifier and Type Method Description final static Ret.pfqnAMVA
pfqn_bs(Matrix L, Matrix N)
Bard-Schweitzer approximate mean value analysis algorithm final static Ret.pfqnAMVA
pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter, Matrix QN0)
Bard-Schweitzer approximate mean value analysis algorithm final static Ret.pfqnAMVA
pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter)
Bard-Schweitzer approximate mean value analysis algorithm final static Ret.pfqnAMVA
pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol)
Bard-Schweitzer approximate mean value analysis algorithm final static Ret.pfqnAMVA
pfqn_bs(Matrix L, Matrix N, Matrix Z)
Bard-Schweitzer approximate mean value analysis algorithm final static Ret.pfqnAMVA
pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter, Matrix QN0, Matrix weight)
Bard-Schweitzer approximate mean value analysis algorithm with weighted priorities final static Ret.pfqnAMVA
pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter, Matrix QN0, Array<SchedStrategy> type)
Bard-Schweitzer approximate mean value analysis algorithm final static Ret.pfqnAMVA
pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter, Matrix QN0, Array<SchedStrategy> type, Matrix weight)
Bard-Schweitzer approximate mean value analysis algorithm with optional weighted priorities -
-
Method Detail
-
pfqn_bs
final static Ret.pfqnAMVA pfqn_bs(Matrix L, Matrix N)
Bard-Schweitzer approximate mean value analysis algorithm
-
pfqn_bs
@JvmOverloads() final static Ret.pfqnAMVA pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter, Matrix QN0)
Bard-Schweitzer approximate mean value analysis algorithm
-
pfqn_bs
@JvmOverloads() final static Ret.pfqnAMVA pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter)
Bard-Schweitzer approximate mean value analysis algorithm
-
pfqn_bs
@JvmOverloads() final static Ret.pfqnAMVA pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol)
Bard-Schweitzer approximate mean value analysis algorithm
-
pfqn_bs
@JvmOverloads() final static Ret.pfqnAMVA pfqn_bs(Matrix L, Matrix N, Matrix Z)
Bard-Schweitzer approximate mean value analysis algorithm
-
pfqn_bs
final static Ret.pfqnAMVA pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter, Matrix QN0, Matrix weight)
Bard-Schweitzer approximate mean value analysis algorithm with weighted priorities
- Parameters:
L
-the service demand matrix
N
-the population vector
Z
-the think times vector
tol
-max tolerance admitted between successive iterations
maxiter
-maximum number of iterations
QN0
-original queue lengths
weight
-weight matrix for priorities (MxR)
- Returns:
the performance metrics for this network.
-
pfqn_bs
final static Ret.pfqnAMVA pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter, Matrix QN0, Array<SchedStrategy> type)
Bard-Schweitzer approximate mean value analysis algorithm
- Parameters:
L
-the service demand matrix
N
-the population vector
Z
-the think times vector
tol
-max tolerance admitted between successive iterations
maxiter
-maximum number of iterations
QN0
-original queue lengths
type
-scheduling disciplines at each station
- Returns:
the performance metrics for this network.
-
pfqn_bs
final static Ret.pfqnAMVA pfqn_bs(Matrix L, Matrix N, Matrix Z, Double tol, Integer maxiter, Matrix QN0, Array<SchedStrategy> type, Matrix weight)
Bard-Schweitzer approximate mean value analysis algorithm with optional weighted priorities
- Parameters:
L
-the service demand matrix
N
-the population vector
Z
-the think times vector
tol
-max tolerance admitted between successive iterations
maxiter
-maximum number of iterations
QN0
-original queue lengths
type
-scheduling disciplines at each station
weight
-optional weight matrix for priorities (MxR)
- Returns:
the performance metrics for this network.
-
-
-
-