Class Lossn_erlangfpKt

    • Nested Class Summary

      Nested Classes 
      Modifier and Type Class Description
    • Field Summary

      Fields 
      Modifier and Type Field Description
    • Constructor Summary

      Constructors 
      Constructor Description
    • Enum Constant Summary

      Enum Constants 
      Enum Constant Description
    • Method Summary

      Modifier and Type Method Description
      final static Ret.lossnErlangFP lossn_erlangfp(Matrix nuVec, Matrix Amat, Matrix cVec) This method calculates the Erlang fixed point approximation for loss networks.
      • Methods inherited from class java.lang.Object

        clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
    • Constructor Detail

    • Method Detail

      • lossn_erlangfp

         final static Ret.lossnErlangFP lossn_erlangfp(Matrix nuVec, Matrix Amat, Matrix cVec)

        This method calculates the Erlang fixed point approximation for loss networks.

        Calls (jobs) on route (class) r arrive according to a Poisson rate nu_r, r=1,...,R. Call service times on route r have unit mean.

        The link capacity requirements are defined as: sum<sub>r</sub> A(j, r) n(j, r) < C(j) for all links j=1,...,J, where n(j, r) counts the calls on route r on link j.

        Parameters:
        nuVec - A Matrix (1xR) representing the arrival rate of route (class) r = 1,...,R.
        Amat - A Matrix (J,R) representing the capacity requirement of link j for route r = 1,...,R.
        cVec - A Matrix (J,1) representing the available capacity of link j.
        Returns:

        lossnErlangFPReturn which contains:

        • qLen (1xR): mean queue-length for route r = 1,...,R calls.

        • loss (1xR): loss probability for route r = 1,...,R calls.

        • eBlock (Jx1): blocking probability for link j = 1,...,J.

        Note: nu_r may be replaced by a utilization rho_r=nu_r/mu_r, where mu_r is the service rate for route r. Example: lossn_erlangfp(new Matrix("0.3,0.1"), new Matrix("1,1;1,4"), new Matrix("1,3")).qLen.print();