3model = Network(
'model');
5node{1} = Delay(model,
'Delay');
6node{2} = Queue(model,
'Queue1', SchedStrategy.PS);
7node{3} = Queue(model,
'Queue2', SchedStrategy.FCFS);
8node{3}.setNumServers(2);
11jobclass{1} = ClosedClass(model,
'Class1', N(1), node{1}, 0);
12jobclass{2} = ClosedClass(model,
'Class2', N(2), node{1}, 0);
14node{1}.setService(
jobclass{1}, Exp(1));
15node{1}.setService(
jobclass{2}, Exp(1));
17node{2}.setService(
jobclass{1}, Exp(3));
18node{2}.setService(
jobclass{2}, Exp(4));
20node{3}.setService(
jobclass{1}, Exp(3));
21node{3}.setService(
jobclass{2}, Exp(3));
24P = model.initRoutingMatrix;
26P{1,1} = [0,1,0; 0,0,0; 1,0,0];
27P{1,2} = [0,0,0; 0,0,1; 0,0,0];
28P{2,1} = [0,1,0; 0,0,0; 1,0,0];
29P{2,2} = [0,0,0; 0,0,1; 0,0,0];
33M = model.getNumberOfStations();
34K = model.getNumberOfClasses();
36%This part illustrates the execution of different solvers
37fprintf(1,
'This example illustrates the calculation of probabilities via normalizing constants.\n')
39options = Solver.defaultOptions;
44% set a custom initial state
50 node{i}.setState(n(i,:));
52state = model.getState;
55solver = CTMC(model,options);
56Pr = solver.getProbAggr(node{M});
57fprintf(1,
'Station %d is in state %s with probability %d\n',i,mat2str(state{i}),Pr);
60solver = NC(model,options);
61Pr = solver.getProbAggr(node{M});
62fprintf(1,
'Station %d is in state %s with probability %d\n',i,mat2str(state{i}),Pr);
65solver = SSA(model,options);
66Pr = solver.getProbAggr(node{M});
67fprintf(1,
'Station %d is in state %s with probability %d\n',i,mat2str(state{i}),Pr);
70solver = JMT(model,options);
71Pr = solver.getProbAggr(node{M});
72fprintf(1,
'Station %d is in state %s with probability %d\n',i,mat2str(state{i}),Pr);
76solver = CTMC(model,options);
77Pr = solver.getProb(node{M});
78fprintf(1,
'Station %d is in state %s with probability %d\n',i,mat2str(state{i}),Pr);
81% solver = NC(model,options);
82% Pr = solver.getProb(node{M});
85solver = SSA(model,options);
86Pr = solver.getProb(node{M});
87fprintf(1,
'Station %d is in state %s with probability %d\n',i,mat2str(state{i}),Pr);
91solver = CTMC(model,options);
92Pr = solver.getProbSysAggr();
95solver = NC(model,options);
96Pr = solver.getProbSysAggr();
99solver = SSA(model,options);
100Pr = solver.getProbSysAggr();
103solver = JMT(model,options);
104Pr = solver.getProbSysAggr();
108solver = CTMC(model,options);
109Pr = solver.getProbSys();
112%solver = NC(model,options);
113%Pr = solver.getProbSys();
116solver = SSA(model,options);
117Pr = solver.getProbSys();
120% options.samples = 3e5;
121% solver = JMT(model,options);
122% Pr = solver.getProbSys();