1function X=Q_Sylvest(U,T,B)
2% X=Q_Sylvest(U,T,B) solves the equation X*kron(A,I)+BX=-I
3%
using a Hessenberg decomposition with kron(A,I)=U
'*T*U
18 temp=F(:,k)-Y(:,1:k-1)*T(1:k-1,k);
20 Y(:,k)=(NBAR+eye(n)*T(k,k))\temp;
21 % MATLAB checks that NBAR+T(k,k)*LBAR is an hessenberg
22 % matrix and quickly reduces it to a triangular one which is
23 % solved by backward substitution (TEST 6)