LINE Solver
MATLAB API documentation
Loading...
Searching...
No Matches
solver_mva_cacheqn_analyzer.m
1function [Q,U,R,T,C,X,lG,hitprob,missprob,runtime,it] = solver_mva_cacheqn_analyzer(self, options)
2% [Q,U,R,T,C,X,LG,RUNTIME,ITER] = SOLVER_MVA_CACHEQN_ANALYZER(SELF, OPTIONS)
3
4% Copyright (c) 2012-2026, Imperial College London
5% All rights reserved.
6
7snorig = self.model.getStruct;
8sn = snorig;
9I = sn.nnodes;
10K = sn.nclasses;
11
12line_debug('MVA cacheqn analyzer starting: method=%s, nclasses=%d', options.method, K);
13
14statefulNodes = find(sn.isstateful)';
15statefulNodesClasses = [];
16for ind=statefulNodes %#ok<FXSET>
17 statefulNodesClasses(end+1:end+K)= ((ind-1)*K+1):(ind*K);
18end
19lambda = zeros(1,K);
20lambda_1 = zeros(1,K);
21caches = find(sn.nodetype == NodeType.Cache);
22
23hitprob = zeros(length(caches),K);
24missprob = zeros(length(caches),K);
25
26for it=1:options.iter_max
27 for ind=caches
28 ch = sn.nodeparam{ind};
29 hitClass = ch.hitclass;
30 missClass = ch.missclass;
31 inputClass = find(hitClass);
32 m = ch.itemcap;
33 n = ch.nitems;
34 if it == 1
35 % initial random value of arrival rates to the cache
36 lambda_1(inputClass) = rand(1,length(inputClass));
37 lambda = lambda_1;
38 sn.nodetype(ind) = NodeType.ClassSwitch;
39 end
40
41 % solution of isolated cache
42 h = length(m);
43 u = length(lambda);
44 lambda_cache = zeros(u,n,h);
45
46 for v=1:u
47 for k=1:n
48 for l=1:(h+1)
49 if ~isnan(ch.pread{v})
50 lambda_cache(v,k,l) = lambda(v) * ch.pread{v}(k);
51 end
52 end
53 end
54 end
55
56 Rcost = ch.accost;
57 gamma = cache_gamma_lp(lambda_cache,Rcost);
58
59 switch options.method
60 case 'exact'
61 [~,~,pij] = cache_mva(gamma, m);
62 pij = [abs(1-sum(pij,2)),pij];
63 missrate(ind,:) = zeros(1,u);
64 for v=1:u
65 missrate(ind,v) = lambda_cache(v,:,1)*pij(:,1);
66 end
67 otherwise
68 line_debug('Default method: using FPI approximation for cache\n');
69 line_debug('Using FPI approximation, calling cache_miss_fpi');
70 [~,missrate(ind,:)] = cache_miss_fpi(gamma, m, lambda_cache);
71 end
72 missprob(ind,:) = missrate(ind,:) ./ lambda; % we set to NaN if no arrivals
73 hitprob(ind,:) = 1 - missprob(ind,:);
74 hitprob(isnan(hitprob)) = 0;
75 missprob(isnan(missprob)) = 0;
76
77 % bring back the isolated model results into the queueing model
78 for r=inputClass
79 sn.rtnodes((ind-1)*K+r,:) = 0;
80 for jnd=1:I
81 if sn.connmatrix(ind,jnd)
82 sn.rtnodes((ind-1)*K+r,(jnd-1)*K+hitClass(r)) = hitprob(ind,r);
83 sn.rtnodes((ind-1)*K+r,(jnd-1)*K+missClass(r)) = missprob(ind,r);
84 end
85 end
86 end
87 sn.rt = dtmc_stochcomp(sn.rtnodes,statefulNodesClasses);
88 end
89 [visits, nodevisits, sn] = sn_refresh_visits(sn, sn.chains, sn.rt, sn.rtnodes);
90 sn.visits = visits;
91 sn.nodevisits = nodevisits;
92
93 switch options.method
94 case {'aba.upper', 'aba.lower', 'bjb.upper', 'bjb.lower', 'pb.upper', 'pb.lower', 'gb.upper', 'gb.lower', 'sb.upper', 'sb.lower'}
95 [Q,U,R,T,C,X,lG,runtime] = solver_mva_bound_analyzer(sn, options);
96 otherwise
97 if ~isempty(sn.lldscaling) || ~isempty(sn.cdscaling)
98 [Q,U,R,T,C,X,lG,runtime] = solver_mvald_analyzer(sn, options);
99 else
100 [Q,U,R,T,C,X,lG,runtime] = solver_mva_analyzer(sn, options);
101 end
102
103 nodevisits = cellsum(nodevisits);
104 for ind=caches
105 for r=inputClass
106 c = find(sn.chains(:,r));
107 inchain = find(sn.chains(c,:));
108 if sn.refclass(c)>0
109 lambda(r) = sum(X(inchain)) * nodevisits(ind,r) / nodevisits(sn.stationToNode(sn.refstat(r)),sn.refclass(c));
110 else
111 lambda(r) = sum(X(inchain)) * nodevisits(ind,r) / nodevisits(sn.stationToNode(sn.refstat(r)),r);
112 end
113 end
114 end
115 if norm(lambda-lambda_1,1) < options.iter_tol
116 break
117 end
118 lambda_1 = lambda;
119end
120end