1function [Q,U,R,T,C,X,lG,totiter] = solver_amvald(sn, Lchain,STchain,Vchain,alpha,Nchain,SCVchain,refstatchain, options)
6Nt = sum(Nchain(isfinite(Nchain)));
8deltaclass = (Nchain - 1) ./ Nchain;
9deltaclass(isinf(Nchain)) = 1;
10tol = options.iter_tol;
11nservers = sn.nservers;
12schedparam = sn.schedparam;
13lldscaling = sn.lldscaling;
14cdscaling = sn.cdscaling;
15ljdscaling = sn.ljdscaling;
16ljdcutoffs = sn.ljdcutoffs;
17ljcdscaling = sn.ljcdscaling;
18ljcdcutoffs = sn.ljcdcutoffs;
20classprio = sn.classprio;
27Qchain = options.init_sol;
29 % balanced initialization
31 Qchain = Qchain ./ repmat(sum(Qchain,1),size(Qchain,1),1) .* repmat(Nchain,size(Qchain,1),1);
32 Qchain(isinf(Qchain))=0; % open
classes
33 for r=find(isinf(Nchain)) % open
classes
34 Qchain(refstatchain(r),r)=0;
38nnzclasses = find(Nchain>0);
39Xchain = 1./sum(STchain,1);
40for r=find(isinf(Nchain)) % open
classes
41 Xchain(r) = 1 ./ STchain(refstatchain(r),r);
46 if isinf(nservers(k)) % infinite server
47 Uchain(k,r) = Vchain(k,r)*STchain(k,r)*Xchain(r);
49 Uchain(k,r) = Vchain(k,r)*STchain(k,r)*Xchain(r)/nservers(k);
56 gamma = zeros(K,M,K); %
class-based customer fraction corrections
57 tau = zeros(K,K); % throughput difference
59 gamma = zeros(K,M); % total customer fraction corrections
60 tau = zeros(K,K); % throughput difference
64omicron = 0.5; % under-relaxation parameter
66while (outer_iter < 2 || max(max(abs(Qchain-QchainOuter_1))) > tol) && outer_iter < sqrt(options.iter_max)
67 outer_iter = outer_iter + 1;
68 QchainOuter_1 = Qchain;
69 XchainOuter_1 = Xchain;
70 UchainOuter_1 = Uchain;
72 if isfinite(Nt) && Nt>0
75 %line_error(mfilename,
'AQL is currently disabled in SolverMVA, please use the SolverJMT implementation (method jmva.aql).');
77 % iteration at population N-1_s
79 if isfinite(Nchain(s)) % don
't recur on open classes
81 Nchain_s = oner(Nchain,s);
82 Qchain_s = Qchain * (Nt-1)/Nt;
83 Xchain_s = Xchain * (Nt-1)/Nt;
84 Uchain_s = Uchain * (Nt-1)/Nt;
85 while (iter_s < 2 || max(max(abs(Qchain_s-Qchain_s_1))) > tol) && iter_s <= sqrt(options.iter_max)
88 Qchain_s_1 = Qchain_s;
89 Xchain_s_1 = Xchain_s;
90 Uchain_s_1 = Uchain_s;
92 [Wchain_s, STeff_s] = solver_amvald_forward(M, K, nservers, schedparam, lldscaling, cdscaling, ljdscaling, ljdcutoffs, ljcdscaling, ljcdcutoffs, sched, classprio, gamma, tau, Qchain_s_1, Xchain_s_1, Uchain_s_1, STchain, Vchain, Nchain_s, SCVchain, options);
93 totiter = totiter + 1;
94 if totiter > options.iter_max
98 %% update other metrics
100 if sum(Wchain_s(:,r)) == 0
103 if isinf(Nchain_s(r))
104 Cchain_s(r) = Vchain(:,r)' * Wchain_s(:,r);
105 % X(r) remains constant
110 Cchain_s(r) = Vchain(:,r)
' * Wchain_s(:,r);
111 Xchain_s(r) = omicron * Nchain_s(r) / Cchain_s(r) + (1-omicron) * Xchain_s_1(r);
115 Rchain_s(k,r) = Vchain(k,r) * Wchain_s(k,r);
116 Qchain_s(k,r) = omicron * Xchain_s(r) * Vchain(k,r) * Wchain_s(k,r) + (1-omicron) * Qchain_s_1(k,r);
117 Tchain_s(k,r) = Xchain_s(r) * Vchain(k,r);
118 Uchain_s(k,r) = omicron * Vchain(k,r) * STeff_s(k,r) * Xchain_s(r) + (1-omicron) * Uchain_s_1(k,r);
123 switch options.method
127 if ~isinf(Nchain(r)) && Nchain_s(r)>0
128 gamma(s,k,r) = Qchain_s_1(k,r)./Nchain_s(r) - QchainOuter_1(k,r)./Nchain(r);
134 gamma(s,k) = sum(Qchain_s_1(k,:),2)/(Nt-1) - sum(QchainOuter_1(k,:),2)/Nt;
139 tau(s,r) = Xchain_s_1(r) - XchainOuter_1(r); % save throughput for priority AMVA
147 % iteration at population N
148 while (iter < 2 || max(max(abs(Qchain-Qchain_1))) > tol) && iter <= sqrt(options.iter_max)
155 [Wchain, STeff] = solver_amvald_forward(M, K, nservers, schedparam, lldscaling, cdscaling, ljdscaling, ljdcutoffs, ljcdscaling, ljcdcutoffs, sched, classprio, gamma, tau, Qchain_1, Xchain_1, Uchain_1, STchain, Vchain, Nchain, SCVchain, options);
156 totiter = totiter + 1;
157 if totiter > options.iter_max
162 %% update other metrics
164 if sum(Wchain(:,r)) == 0
168 Cchain_s(r) = Vchain(:,r)'*Wchain(:,r);
169 % X(r) remains constant
174 Cchain_s(r) = Vchain(:,r)
'*Wchain(:,r);
175 Xchain(r) = omicron * Nchain(r) / Cchain_s(r) + (1-omicron) *Xchain_1(r);
179 Rchain(k,r) = Vchain(k,r) * Wchain(k,r);
180 Qchain(k,r) = omicron * Xchain(r) * Vchain(k,r) * Wchain(k,r) + (1-omicron) * Qchain_1(k,r);
181 Tchain(k,r) = Xchain(r) * Vchain(k,r);
182 Uchain(k,r) = omicron * Vchain(k,r) * STeff(k,r) * Xchain(r) + (1-omicron) * Uchain_1(k,r);
189% the next block is a coarse approximation for LD and CD, would need
190% cdterm and qterm in it but these are hidden within the iteration calls
193 if Vchain(k,r) * STeff(k,r) >0
195 case {SchedStrategy.FCFS, SchedStrategy.SIRO, SchedStrategy.PS, SchedStrategy.LCFSPR, SchedStrategy.DPS, SchedStrategy.HOL}
196 if sum(Uchain(k,:))>1
197 Uchain(k,r) = min(1,sum(Uchain(k,:))) * Vchain(k,r) * STeff(k,r) * Xchain(r) / ((Vchain(k,:) .* STeff(k,:)) * Xchain(:));
204Rchain = Qchain./Tchain;
205Xchain(~isfinite(Xchain))=0;
206Uchain(~isfinite(Uchain))=0;
207%Qchain(~isfinite(Qchain))=0;
208Rchain(~isfinite(Rchain))=0;
211Uchain(:,Nchain==0)=0;
212%Qchain(:,Nchain==0)=0;
213Rchain(:,Nchain==0)=0;
214Tchain(:,Nchain==0)=0;
216if isempty(sn.lldscaling) && isempty(sn.cdscaling) && ~sn_has_joint_dependence(sn)
217 [Q,U,R,T,C,X] = sn_deaggregate_chain_results(sn, Lchain, [], STchain, Vchain, alpha, [], [], Rchain, Tchain, [], Xchain);
219 [Q,U,R,T,C,X] = sn_deaggregate_chain_results(sn, Lchain, [], STchain, Vchain, alpha, [], Uchain, Rchain, Tchain, [], Xchain);
222% estimate normalizing constant for closed classes
223ccl = isfinite(Nchain);
224Nclosed = Nchain(ccl);
225Xclosed = Xchain(ccl);
226lG = - Nclosed(Xclosed>options.tol) * log(Xclosed(Xclosed>options.tol))'; % asymptotic approximation