1function [Q,U,R,T,C,X,lG,totiter] = solver_amvald(sn, Lchain,STchain,Vchain,alpha,Nchain,SCVchain,refstatchain, options)
3max_totiter = min(options.iter_max, 10000); % Hard cap
for stability
7Nt = sum(Nchain(isfinite(Nchain)));
9deltaclass = (Nchain - 1) ./ Nchain;
10deltaclass(isinf(Nchain)) = 1;
11tol = options.iter_tol;
12nservers = sn.nservers;
13schedparam = sn.schedparam;
14lldscaling = sn.lldscaling;
15cdscaling = sn.cdscaling;
16ljdscaling = sn.ljdscaling;
17ljdcutoffs = sn.ljdcutoffs;
18ljcdscaling = sn.ljcdscaling;
19ljcdcutoffs = sn.ljcdcutoffs;
21classprio = sn.classprio;
28Qchain = options.init_sol;
30 % balanced initialization
32 Qchain = Qchain ./ repmat(sum(Qchain,1),size(Qchain,1),1) .* repmat(Nchain,size(Qchain,1),1);
33 Qchain(isinf(Qchain))=0; % open
classes
34 for r=find(isinf(Nchain)) % open
classes
35 Qchain(refstatchain(r),r)=0;
39nnzclasses = find(Nchain>0);
40Xchain = 1./sum(STchain,1);
41for r=find(isinf(Nchain)) % open
classes
42 Xchain(r) = 1 ./ STchain(refstatchain(r),r);
47 if isinf(nservers(k)) % infinite server
48 Uchain(k,r) = Vchain(k,r)*STchain(k,r)*Xchain(r);
50 Uchain(k,r) = Vchain(k,r)*STchain(k,r)*Xchain(r)/nservers(k);
57 gamma = zeros(K,M,K); %
class-based customer fraction corrections
58 tau = zeros(K,K); % throughput difference
60 gamma = zeros(K,M); % total customer fraction corrections
61 tau = zeros(K,K); % throughput difference
65omicron = 0.5; % under-relaxation parameter
67while (outer_iter < 2 || max(max(abs(Qchain-QchainOuter_1))) > tol) && outer_iter < sqrt(options.iter_max) && totiter <= max_totiter
68 outer_iter = outer_iter + 1;
69 QchainOuter_1 = Qchain;
70 XchainOuter_1 = Xchain;
71 UchainOuter_1 = Uchain;
73 if isfinite(Nt) && Nt>0
76 %line_error(mfilename,
'AQL is currently disabled in SolverMVA, please use the SolverJMT implementation (method jmva.aql).');
78 % iteration at population N-1_s
80 if isfinite(Nchain(s)) % don
't recur on open classes
82 Nchain_s = oner(Nchain,s);
83 Qchain_s = Qchain * (Nt-1)/Nt;
84 Xchain_s = Xchain * (Nt-1)/Nt;
85 Uchain_s = Uchain * (Nt-1)/Nt;
86 while (iter_s < 2 || max(max(abs(Qchain_s-Qchain_s_1))) > tol) && iter_s <= sqrt(options.iter_max)
89 Qchain_s_1 = Qchain_s;
90 Xchain_s_1 = Xchain_s;
91 Uchain_s_1 = Uchain_s;
93 [Wchain_s, STeff_s] = solver_amvald_forward(M, K, nservers, schedparam, lldscaling, cdscaling, ljdscaling, ljdcutoffs, ljcdscaling, ljcdcutoffs, sched, classprio, gamma, tau, Qchain_s_1, Xchain_s_1, Uchain_s_1, STchain, Vchain, Nchain_s, SCVchain, options);
94 totiter = totiter + 1;
95 if totiter >= max_totiter
99 %% update other metrics
101 if sum(Wchain_s(:,r)) == 0
104 if isinf(Nchain_s(r))
105 Cchain_s(r) = Vchain(:,r)' * Wchain_s(:,r);
106 % X(r) remains constant
111 Cchain_s(r) = Vchain(:,r)
' * Wchain_s(:,r);
112 Xchain_s(r) = omicron * Nchain_s(r) / Cchain_s(r) + (1-omicron) * Xchain_s_1(r);
116 Rchain_s(k,r) = Vchain(k,r) * Wchain_s(k,r);
117 Qchain_s(k,r) = omicron * Xchain_s(r) * Vchain(k,r) * Wchain_s(k,r) + (1-omicron) * Qchain_s_1(k,r);
118 Tchain_s(k,r) = Xchain_s(r) * Vchain(k,r);
119 Uchain_s(k,r) = omicron * Vchain(k,r) * STeff_s(k,r) * Xchain_s(r) + (1-omicron) * Uchain_s_1(k,r);
124 switch options.method
128 if ~isinf(Nchain(r)) && Nchain_s(r)>0
129 gamma(s,k,r) = Qchain_s_1(k,r)./Nchain_s(r) - QchainOuter_1(k,r)./Nchain(r);
135 gamma(s,k) = sum(Qchain_s_1(k,:),2)/(Nt-1) - sum(QchainOuter_1(k,:),2)/Nt;
140 tau(s,r) = Xchain_s_1(r) - XchainOuter_1(r); % save throughput for priority AMVA
143 % Check if iteration limit exceeded (break out of for s loop)
144 if totiter >= max_totiter
150 % Check if iteration limit exceeded (break out of outer while loop)
151 if totiter >= max_totiter
156 % iteration at population N
157 while (iter < 2 || max(max(abs(Qchain-Qchain_1))) > tol) && iter <= sqrt(options.iter_max)
164 [Wchain, STeff] = solver_amvald_forward(M, K, nservers, schedparam, lldscaling, cdscaling, ljdscaling, ljdcutoffs, ljcdscaling, ljcdcutoffs, sched, classprio, gamma, tau, Qchain_1, Xchain_1, Uchain_1, STchain, Vchain, Nchain, SCVchain, options);
165 totiter = totiter + 1;
166 if totiter >= max_totiter
171 %% update other metrics
173 if sum(Wchain(:,r)) == 0
177 Cchain_s(r) = Vchain(:,r)'*Wchain(:,r);
178 % X(r) remains constant
183 Cchain_s(r) = Vchain(:,r)
'*Wchain(:,r);
184 Xchain(r) = omicron * Nchain(r) / Cchain_s(r) + (1-omicron) *Xchain_1(r);
188 Rchain(k,r) = Vchain(k,r) * Wchain(k,r);
189 Qchain(k,r) = omicron * Xchain(r) * Vchain(k,r) * Wchain(k,r) + (1-omicron) * Qchain_1(k,r);
190 Tchain(k,r) = Xchain(r) * Vchain(k,r);
191 Uchain(k,r) = omicron * Vchain(k,r) * STeff(k,r) * Xchain(r) + (1-omicron) * Uchain_1(k,r);
198% the next block is a coarse approximation for LD and CD, would need
199% cdterm and qterm in it but these are hidden within the iteration calls
202 if Vchain(k,r) * STeff(k,r) >0
204 case {SchedStrategy.FCFS, SchedStrategy.SIRO, SchedStrategy.PS, SchedStrategy.LCFSPR, SchedStrategy.DPS, SchedStrategy.HOL}
205 if sum(Uchain(k,:))>1
206 Uchain(k,r) = min(1,sum(Uchain(k,:))) * Vchain(k,r) * STeff(k,r) * Xchain(r) / ((Vchain(k,:) .* STeff(k,:)) * Xchain(:));
213Rchain = Qchain./Tchain;
214Xchain(~isfinite(Xchain))=0;
215Uchain(~isfinite(Uchain))=0;
216%Qchain(~isfinite(Qchain))=0;
217Rchain(~isfinite(Rchain))=0;
220Uchain(:,Nchain==0)=0;
221%Qchain(:,Nchain==0)=0;
222Rchain(:,Nchain==0)=0;
223Tchain(:,Nchain==0)=0;
225if isempty(sn.lldscaling) && isempty(sn.cdscaling) && ~sn_has_joint_dependence(sn)
226 [Q,U,R,T,C,X] = sn_deaggregate_chain_results(sn, Lchain, [], STchain, Vchain, alpha, [], [], Rchain, Tchain, [], Xchain);
228 [Q,U,R,T,C,X] = sn_deaggregate_chain_results(sn, Lchain, [], STchain, Vchain, alpha, [], Uchain, Rchain, Tchain, [], Xchain);
231% estimate normalizing constant for closed classes
232ccl = isfinite(Nchain);
233Nclosed = Nchain(ccl);
234Xclosed = Xchain(ccl);
235lG = - Nclosed(Xclosed>options.tol) * log(Xclosed(Xclosed>options.tol))'; % asymptotic approximation