1%{ @file sn_refresh_visits.m
2 % @brief Solves traffic equations to compute visit ratios
4 % @author LINE Development Team
5 % Copyright (c) 2012-2026, Imperial College London
10 % @brief Solves traffic equations to compute visit ratios
13 % This function solves the traffic equations to compute the average number
14 % of
visits to
nodes and stations
for each chain in the network.
23 % <tr><th>Name<th>Description
24 % <tr><td>sn<td>Network structure
25 % <tr><td>chains<td>Chain definitions
26 % <tr><td>rt<td>Station routing matrix
27 % <tr><td>rtnodes<td>Node routing matrix
32 % <tr><th>Name<th>Description
33 % <tr><td>
visits<td>Cell array of visit ratios at stations per chain
35 % <tr><td>sn<td>Updated network structure with visit fields populated
38function [
visits, nodevisits, sn] = sn_refresh_visits(sn, chains, rt, rtnodes)
44nchains = size(chains,1);
46%% obtain chain characteristics
49 if sum(refstat(inchain{c}) == refstat(inchain{c}(1))) ~= length(inchain{c})
50 refstat(inchain{c}) = refstat(inchain{c}(1));
51 % line_error(mfilename,sprintf(
'Classes in chain %d have different reference stations. Chain %d classes: %s', c, c, int2str(inchain{c})));
56visits = cell(nchains,1); %
visits{c}(i,j)
is the number of
visits that a chain-c job pays at node i in
class j
58 cols = zeros(1,M*length(inchain{c}));
60 nIC = length(inchain{c});
62 cols(1,(ist-1)*nIC+ik) = (ist-1)*K+inchain{c}(ik);
66 Pchain = rt(cols,cols); % routing probability of the chain
68 % Handle NaN values in routing matrix (e.g., from Cache
class switching)
69 % For
visits calculation, replace NaN with equal probabilities
70 for row = 1:size(Pchain,1)
71 nan_cols = isnan(Pchain(row,:));
73 % Get the non-NaN sum for this row
74 non_nan_sum = sum(Pchain(row, ~nan_cols));
75 % Distribute remaining probability equally among NaN entries
76 remaining_prob = max(0, 1 - non_nan_sum);
77 n_nan = sum(nan_cols);
78 if n_nan > 0 && remaining_prob > 0
79 Pchain(row, nan_cols) = remaining_prob / n_nan;
81 Pchain(row, nan_cols) = 0;
86 visited = sum(Pchain,2) > 0;
88 % Normalize routing matrix for Fork-containing models
89 % Fork
nodes have row sums > 1 (sending to all branches with prob 1 each)
90 % which causes dtmc_solve_reducible to fail. Normalize to make stochastic.
91 if any(sn.nodetype == NodeType.Fork)
92 for row = 1:size(Pchain,1)
93 rs = sum(Pchain(row,:));
94 if rs > GlobalConstants.FineTol
95 Pchain(row,:) = Pchain(row,:) / rs;
100 % Use dtmc_solve as primary, fallback to dtmc_solve_reducible for chains with transient states
101 Pchain_visited = Pchain(visited,visited);
102 alpha_visited = dtmc_solve(Pchain_visited);
103 % Fallback to dtmc_solve_reducible if dtmc_solve fails (e.g., reducible chain)
104 if all(alpha_visited == 0) || any(isnan(alpha_visited))
105 [alpha_visited, ~, ~, ~, ~] = dtmc_solve_reducible(Pchain_visited, [], struct('tol', GlobalConstants.FineTol));
107 alpha = zeros(1,M*K); alpha(visited) = alpha_visited;
108 if max(alpha)>=1-GlobalConstants.FineTol
109 %disabled because a self-looping customer
is an absorbing chain
110 %line_error(mfilename,'One chain has an absorbing state.');
114 for k=1:length(inchain{c})
115 visits{c}(ist,inchain{c}(k)) = alpha((ist-1)*length(inchain{c})+k);
118 normSum = sum(
visits{c}(sn.stationToStateful(refstat(inchain{c}(1))),inchain{c}));
119 if normSum > GlobalConstants.FineTol
128 nodes_cols = zeros(1,I*length(inchain{c}));
130 nIC = length(inchain{c});
132 nodes_cols(1,(ind-1)*nIC+ik) = (ind-1)*K+inchain{c}(ik);
135 nodes_Pchain = rtnodes(nodes_cols, nodes_cols); % routing probability of the chain
137 % Handle NaN values in routing matrix (e.g., from Cache
class switching)
138 % For
visits calculation, replace NaN with equal probabilities
139 for row = 1:size(nodes_Pchain,1)
140 nan_cols = isnan(nodes_Pchain(row,:));
142 % Get the non-NaN sum for this row
143 non_nan_sum = sum(nodes_Pchain(row, ~nan_cols));
144 % Distribute remaining probability equally among NaN entries
145 remaining_prob = max(0, 1 - non_nan_sum);
146 n_nan = sum(nan_cols);
147 if n_nan > 0 && remaining_prob > 0
148 nodes_Pchain(row, nan_cols) = remaining_prob / n_nan;
150 nodes_Pchain(row, nan_cols) = 0;
155 nodes_visited = sum(nodes_Pchain,2) > 0;
157 % Normalize routing matrix for Fork-containing models
158 if any(sn.nodetype == NodeType.Fork)
159 for row = 1:size(nodes_Pchain,1)
160 rs = sum(nodes_Pchain(row,:));
161 if rs > GlobalConstants.FineTol
162 nodes_Pchain(row,:) = nodes_Pchain(row,:) / rs;
167 % Use dtmc_solve as primary, fallback to dtmc_solve_reducible for chains with transient states
168 nodes_Pchain_visited = nodes_Pchain(nodes_visited,nodes_visited);
169 nodes_alpha_visited = dtmc_solve(nodes_Pchain_visited);
170 % Fallback to dtmc_solve_reducible if dtmc_solve_reducible fails (e.g., reducible chain)
171 if all(nodes_alpha_visited == 0) || any(isnan(nodes_alpha_visited))
172 [nodes_alpha_visited, ~, ~, ~, ~] = dtmc_solve_reducible(nodes_Pchain_visited, [], struct('tol', GlobalConstants.FineTol));
174 nodes_alpha = zeros(1,I*K); nodes_alpha(nodes_visited) = nodes_alpha_visited;
178 for k=1:length(inchain{c})
179 nodevisits{c}(ind,inchain{c}(k)) = nodes_alpha((ind-1)*length(inchain{c})+k);
182 nodeNormSum = sum(
nodevisits{c}(sn.statefulToNode(refstat(inchain{c}(1))),inchain{c}));
183 if nodeNormSum > GlobalConstants.FineTol