LINE Solver
MATLAB API documentation
Loading...
Searching...
No Matches
sn_refresh_visits.m
1%{ @file sn_refresh_visits.m
2 % @brief Solves traffic equations to compute visit ratios
3 %
4 % @author LINE Development Team
5 % Copyright (c) 2012-2026, Imperial College London
6 % All rights reserved.
7%}
8
9%{
10 % @brief Solves traffic equations to compute visit ratios
11 %
12 % @details
13 % This function solves the traffic equations to compute the average number
14 % of visits to nodes and stations for each chain in the network.
15 %
16 % @par Syntax:
17 % @code
18 % [visits, nodevisits, sn] = sn_refresh_visits(sn, chains, rt, rtnodes)
19 % @endcode
20 %
21 % @par Parameters:
22 % <table>
23 % <tr><th>Name<th>Description
24 % <tr><td>sn<td>Network structure
25 % <tr><td>chains<td>Chain definitions
26 % <tr><td>rt<td>Station routing matrix
27 % <tr><td>rtnodes<td>Node routing matrix
28 % </table>
29 %
30 % @par Returns:
31 % <table>
32 % <tr><th>Name<th>Description
33 % <tr><td>visits<td>Cell array of visit ratios at stations per chain
34 % <tr><td>nodevisits<td>Cell array of visit ratios at nodes per chain
35 % <tr><td>sn<td>Updated network structure with visit fields populated
36 % </table>
37%}
38function [visits, nodevisits, sn] = sn_refresh_visits(sn, chains, rt, rtnodes)
39
40I = sn.nnodes;
41M = sn.nstateful;
42K = sn.nclasses;
43refstat = sn.refstat;
44nchains = size(chains,1);
45
46%% obtain chain characteristics
47inchain = sn.inchain;
48for c=1:nchains
49 if sum(refstat(inchain{c}) == refstat(inchain{c}(1))) ~= length(inchain{c})
50 refstat(inchain{c}) = refstat(inchain{c}(1));
51 % line_error(mfilename,sprintf('Classes in chain %d have different reference stations. Chain %d classes: %s', c, c, int2str(inchain{c})));
52 end
53end
54
55%% generate station visits
56visits = cell(nchains,1); % visits{c}(i,j) is the number of visits that a chain-c job pays at node i in class j
57for c=1:nchains
58 cols = zeros(1,M*length(inchain{c}));
59 for ist=1:M
60 nIC = length(inchain{c});
61 for ik=1:nIC
62 cols(1,(ist-1)*nIC+ik) = (ist-1)*K+inchain{c}(ik);
63 end
64 end
65
66 Pchain = rt(cols,cols); % routing probability of the chain
67
68 % Handle NaN values in routing matrix (e.g., from Cache class switching)
69 % For visits calculation, replace NaN with equal probabilities
70 for row = 1:size(Pchain,1)
71 nan_cols = isnan(Pchain(row,:));
72 if any(nan_cols)
73 % Get the non-NaN sum for this row
74 non_nan_sum = sum(Pchain(row, ~nan_cols));
75 % Distribute remaining probability equally among NaN entries
76 remaining_prob = max(0, 1 - non_nan_sum);
77 n_nan = sum(nan_cols);
78 if n_nan > 0 && remaining_prob > 0
79 Pchain(row, nan_cols) = remaining_prob / n_nan;
80 else
81 Pchain(row, nan_cols) = 0;
82 end
83 end
84 end
85
86 visited = sum(Pchain,2) > 0;
87
88 % Normalize routing matrix for Fork-containing models
89 % Fork nodes have row sums > 1 (sending to all branches with prob 1 each)
90 % which causes dtmc_solve_reducible to fail. Normalize to make stochastic.
91 if any(sn.nodetype == NodeType.Fork)
92 for row = 1:size(Pchain,1)
93 rs = sum(Pchain(row,:));
94 if rs > GlobalConstants.FineTol
95 Pchain(row,:) = Pchain(row,:) / rs;
96 end
97 end
98 end
99
100 % Use dtmc_solve as primary, fallback to dtmc_solve_reducible for chains with transient states
101 Pchain_visited = Pchain(visited,visited);
102 alpha_visited = dtmc_solve(Pchain_visited);
103 % Fallback to dtmc_solve_reducible if dtmc_solve fails (e.g., reducible chain)
104 if all(alpha_visited == 0) || any(isnan(alpha_visited))
105 [alpha_visited, ~, ~, ~, ~] = dtmc_solve_reducible(Pchain_visited, [], struct('tol', GlobalConstants.FineTol));
106 end
107 alpha = zeros(1,M*K); alpha(visited) = alpha_visited;
108 if max(alpha)>=1-GlobalConstants.FineTol
109 %disabled because a self-looping customer is an absorbing chain
110 %line_error(mfilename,'One chain has an absorbing state.');
111 end
112 visits{c} = zeros(M,K);
113 for ist=1:M
114 for k=1:length(inchain{c})
115 visits{c}(ist,inchain{c}(k)) = alpha((ist-1)*length(inchain{c})+k);
116 end
117 end
118 normSum = sum(visits{c}(sn.stationToStateful(refstat(inchain{c}(1))),inchain{c}));
119 if normSum > GlobalConstants.FineTol
120 visits{c} = visits{c} / normSum;
121 end
122 visits{c} = abs(visits{c});
123end
124
125%% generate node visits
126nodevisits = cell(1,nchains);
127for c=1:nchains
128 nodes_cols = zeros(1,I*length(inchain{c}));
129 for ind=1:I
130 nIC = length(inchain{c});
131 for ik=1:nIC
132 nodes_cols(1,(ind-1)*nIC+ik) = (ind-1)*K+inchain{c}(ik);
133 end
134 end
135 nodes_Pchain = rtnodes(nodes_cols, nodes_cols); % routing probability of the chain
136
137 % Handle NaN values in routing matrix (e.g., from Cache class switching)
138 % For visits calculation, replace NaN with equal probabilities
139 for row = 1:size(nodes_Pchain,1)
140 nan_cols = isnan(nodes_Pchain(row,:));
141 if any(nan_cols)
142 % Get the non-NaN sum for this row
143 non_nan_sum = sum(nodes_Pchain(row, ~nan_cols));
144 % Distribute remaining probability equally among NaN entries
145 remaining_prob = max(0, 1 - non_nan_sum);
146 n_nan = sum(nan_cols);
147 if n_nan > 0 && remaining_prob > 0
148 nodes_Pchain(row, nan_cols) = remaining_prob / n_nan;
149 else
150 nodes_Pchain(row, nan_cols) = 0;
151 end
152 end
153 end
154
155 nodes_visited = sum(nodes_Pchain,2) > 0;
156
157 % Normalize routing matrix for Fork-containing models
158 if any(sn.nodetype == NodeType.Fork)
159 for row = 1:size(nodes_Pchain,1)
160 rs = sum(nodes_Pchain(row,:));
161 if rs > GlobalConstants.FineTol
162 nodes_Pchain(row,:) = nodes_Pchain(row,:) / rs;
163 end
164 end
165 end
166
167 % Use dtmc_solve as primary, fallback to dtmc_solve_reducible for chains with transient states
168 nodes_Pchain_visited = nodes_Pchain(nodes_visited,nodes_visited);
169 nodes_alpha_visited = dtmc_solve(nodes_Pchain_visited);
170 % Fallback to dtmc_solve_reducible if dtmc_solve_reducible fails (e.g., reducible chain)
171 if all(nodes_alpha_visited == 0) || any(isnan(nodes_alpha_visited))
172 [nodes_alpha_visited, ~, ~, ~, ~] = dtmc_solve_reducible(nodes_Pchain_visited, [], struct('tol', GlobalConstants.FineTol));
173 end
174 nodes_alpha = zeros(1,I*K); nodes_alpha(nodes_visited) = nodes_alpha_visited;
175
176 nodevisits{c} = zeros(I,K);
177 for ind=1:I
178 for k=1:length(inchain{c})
179 nodevisits{c}(ind,inchain{c}(k)) = nodes_alpha((ind-1)*length(inchain{c})+k);
180 end
181 end
182 nodeNormSum = sum(nodevisits{c}(sn.statefulToNode(refstat(inchain{c}(1))),inchain{c}));
183 if nodeNormSum > GlobalConstants.FineTol
184 nodevisits{c} = nodevisits{c} / nodeNormSum;
185 end
186 nodevisits{c}(nodevisits{c}<0) = 0; % remove small numerical perturbations
187end
188
189for c=1:nchains
190 nodevisits{c}(isnan(nodevisits{c})) = 0;
191end
192
193%% save results in sn
194sn.visits = visits;
195sn.nodevisits = nodevisits;
196sn.inchain = inchain;
197end
Definition mmt.m:92