1function [G,R,U]=QBD_CR(A0,A1,A2,varargin)
2%QBD_CR Cyclic reduction
for Quasi-Birth-Death Markov Chains [Bini,Meini]
6% G=QBD_CR(A0,A1,A2) computes the minimal nonnegative solution to the
7% matrix equation G = A0 + A1 G + A2 G^2, where A,B and C are square
8% nonnegative matrices, with (A0+A1+A2) irreducible and stochastic
10% [G,R]=QBD_CR(A0,A1,A2) also provides the minimal nonnegative solution
11% to the matrix equation R = A2 + R A1 + R^2 A0
13% [G,R,U]=QBD_CR(A0,A1,A2) also provides the minimal nonnegative solution
14% to the matrix equation U = A1 + A2 (I-U)^(-1) A0
16% CONTINUOUS TIME CASE:
18% G=QBD_CR(A0,A1,A2) computes the minimal nonnegative solution to the
19% matrix equation 0 = A0 + A1 G + A2 G^2, where A,B and C are square
20% nonnegative matrices, with (A0+A1+A2) having row sums equal to zero
22% [G,R]=QBD_CR(A0,A1,A2) also provides the minimal nonnegative solution
23% to the matrix equation 0 = A2 + R A1 + R^2 A0
25% [G,R,U]=QBD_CR(A0,A1,A2) also provides the minimal nonnegative solution
26% to the matrix equation U = A1 + A2 (-U)^(-1) A0
30% MaxNumIt: Maximum number of iterations (default: 50)
31% Verbose: The residual error
is printed at each step when set to 1,
33% Mode:
'Basic' uses the Basic Cyclic Reduction
34%
'Shift' uses the shift technique to accelarate convergence
47OptionValues{1}=[
'Basic';
51for i=1:size(OptionNames,1)
52 options.(deblank(OptionNames(i,:)))=[];
56%options.ProgressBar=0;
61% Convert to discrete time problem, if needed
64if (sum(diag(A1)<0)) % continuous time
73QBD_ParsePara(A0,A1,A2);
75% Parse Optional Parameters
76options=ParseOptPara(options,OptionNames,OptionTypes,OptionValues,varargin);
78% check whether G
is known explicitly
79[G,R,U]=QBD_EG(A0,A1,A2,options.Verbose,nargout);
87if (options.Mode=='Shift')
88 theta=statvec(A0+A1+A2);
89 drift=theta*sum(A0,2)-theta*sum(A2,2);
90 if (drift < 0) % MC
is transient -> use the dual MC
91 if (nargout > 1 | options.Verbose==1)
94 A2=A2-ones(m,1)*(theta*A2);
95 A1=A1+ones(m,1)*(theta*A0);
98 if (nargout > 2 | options.Verbose==1) % store A0old to compute U
106% Start of Cyclic Reduction (Basic)
110if (nargout <= 1 & options.Verbose ~= 1) % A1 and A2 only needed to compute R
114%if (options.ProgressBar==1)
115% progressBar2(0,'Quasi-Birth-Death','Computing R via Cyclic Reduction (CR) ...');
119while (check > 10^(-14) & numit < options.MaxNumIt)
120 Atemp=(eye(m)-A)^(-1);
124 A=A+BAtemp*C+Atemp*B;
128 check=min(norm(B,inf),norm(C,inf));
129 %if (options.ProgressBar==1)
130 % est_numit=ceil(log2(log(10^(-50))/log(check/checkold)));
132 % progressBar2(min([1 numit/(numit+est_numit)]),'Quasi-Birth-Death');
134 if (options.Verbose==1)
135 fprintf('Check after %d iterations: %d\n',numit,check);
139if (numit == options.MaxNumIt && check > 10^(-14))
140 warning('Maximum Number of Iterations %d reached',numit);
142clear Atemp BAtemp A B C;
143G=(eye(m)-Ahat)^(-1)*A0;
147if (options.Mode=='Shift')
148 if (drift < 0) % transient
149 if (nargout > 1 | options.Verbose==1)
150 A1=A1-ones(m,1)*theta*A0; % restore original A1
151 A2=A2old; % restore original A2
155 if (nargout > 1 | options.Verbose==1)
156 A1=A1-sum(A2,2)*uT; % restore original A1
158 if (nargout > 2 | options.Verbose==1)
159 A0=A0old; % restore original A0
164if (options.Verbose==1)
165 res_norm=norm(G-A0-(A1+A2*G)*G,inf);
166 fprintf('Final Residual Error for G: %d\n',res_norm);
171 R=A2*(eye(m)-(A1+A2*G))^(-1);
172 if (options.Verbose==1)
173 res_norm=norm(R-A2-R*(A1+R*A0),inf);
174 fprintf('Final Residual Error for R: %d\n',res_norm);
181 if (options.Verbose==1)
182 res_norm=norm(U-A1-A2*(eye(m)-U)^(-1)*A0,inf);
183 fprintf('Final Residual Error for U: %d\n',res_norm);
191%if (options.ProgressBar==1)
192% progressBar2(1,'Quasi-Birth-Death');