LINE Solver
MATLAB API documentation
Loading...
Searching...
No Matches
polling_qsys_1limited.m
1function W=polling_qsys_1limited(arvMAPs,svcMAPs,switchMAPs)
2% W=polling_qsys_1limited(arvMAPs,svcMAPs,switchMAPs)
3%
4% Exact mean waiting time solution of a polling system with open arrivals.
5% All queues use 1-limited service.
6%
7% O. J. Boxma and B. Meister. Waiting-time approximations for
8% cyclic-service systems with switch-over times. SIGMETRICS
9% /PERFORMANCE '86, page 254–262, New York, NY, USA, 1986.
10%
11% Example:
12% W=polling_qsys_1limited({map_exponential(1/0.6),map_exponential(1/0.2)},{map_exponential(1),map_exponential(1)},{map_exponential(1),map_exponential(1)})
13
14n = length(arvMAPs); % number of classes
15for i=1:n
16 lambda(i) = map_lambda(arvMAPs{i});
17 b(i) = map_mean(svcMAPs{i});
18 b2(i) = map_moment(svcMAPs{i},2);
19 rho1(i) = lambda(i)*b(i);
20 r1(i) = map_mean(switchMAPs{i});
21 delta2(i) = map_var(switchMAPs{i});
22end
23rho=sum(rho1);
24R=sum(r1);
25% station time method Ferguson and Aminetzah 1985 as reported by Takagi
26W=onelimited(n,rho,delta2,lambda,b2,rho1,R);
27end
28
29function W=onelimited(n,rho,delta2,lambda,b2,rho1,R)
30W = zeros(1,n);
31for i=1:n
32 W(i)=(1-rho+rho1(i))/(1-rho-lambda(i)*R);
33 W(i)=W(i)*(1-rho)/((1-rho)*rho+sum(rho1.^2));
34 W(i)=W(i)*(rho/(2*(1-rho))*sum(lambda*b2(:))+rho*sum(delta2)/2/R + R/(2*(1-rho))*(rho1(i)*(1+rho1(i))));
35 end
36end