3 % @file pfqn_mmint2_gausslegendre.m
4 % @brief McKenna-Mitra integral with Gauss-Legendre quadrature.
10 % @brief McKenna-Mitra integral with Gauss-Legendre quadrature.
11 % @fn pfqn_mmint2_gausslegendre(L, N, Z, m)
12 % @param L Service demand vector.
13 % @param N Population vector.
14 % @param Z Think time vector.
15 % @param m Replication factor (
default: 1).
16 % @return G Normalizing constant.
17 % @return lG Logarithm of normalizing constant.
20function [G,lG]= pfqn_mmint2_gausslegendre(L,N,Z,m)
21% [G,LOGG] = PFQN_MMINT2_GAUSSLEGENDRE(L,N,Z,m)
23% Integrate McKenna-Mitra integral form with Gauss-Legendre in [0,1e6]
28persistent gausslegendreNodes;
29persistent gausslegendreWeights;
31%
nodes and weights generated with tridiagonal eigenvalues method in
32% high-precision
using Julia:
36% function gauss(a, b, N)
37% λ, Q = eigen(SymTridiagonal(zeros(N), [n / sqrt(4n^2 - 1)
for n = 1:N-1]))
38% @. (λ + 1) * (b - a) / 2 + a, [2Q[1, i]^2 for i = 1:N] * (b - a) / 2
41if isempty(gausslegendreNodes)
42 gausslegendreNodes=load(which(
'gausslegendre-nodes.txt'));
43 gausslegendreWeights=load(which(
'gausslegendre-weights.txt'));
46% use at least 300 points
47n = max(300,min(length(gausslegendreNodes),2*(sum(N)+m-1)-1));
50 y(i)=N*log(Z+L*gausslegendreNodes(i))
';
52g = log(gausslegendreWeights(1:n))-gausslegendreNodes(1:n)+y(:);
53coeff = - sum(factln(N))- factln(m-1) + (m-1)*sum(log(gausslegendreNodes(1:n)));
54lG = log(sum(exp(g))) + coeff;
55if ~isfinite(lG) % if numerical difficulties switch to logsumexp trick
56 lG = logsumexp(g) + coeff;