3model = LayeredNetwork(
'LQN1');
5% definition of processors, tasks and entries
6P1 = Processor(model,
'P1', Inf, SchedStrategy.INF);
7T1 = Task(model,
'T1', 1, SchedStrategy.REF).on(P1);
8E1 = Entry(model,
'E1').on(T1);
10P2 = Processor(model,
'P2', Inf, SchedStrategy.INF);
11T2 = Task(model,
'T2', Inf, SchedStrategy.INF).on(P2);
12E2 = Entry(model,
'E2').on(T2);
14% definition of activities
15T1.setThinkTime(Erlang.fitMeanAndOrder(0.0001,2));
17A1 = Activity(model,
'A1', Exp(1.0)).on(T1).boundTo(E1).synchCall(E2,3);
18A2 = Activity(model,
'A2', APH.fitMeanAndSCV(1,10)).on(T2).boundTo(E2).repliesTo(E2);
22options = LQNS.defaultOptions;
25%options.method =
'lqsim';
26%options.samples = 1e4;
27lqnssolver = LQNS(model, options);
28AvgTableLQNS = lqnssolver.getAvgTable;
31%
this method runs the MVA solver in each layer
32lnoptions = LN.defaultOptions;
35options = MVA.defaultOptions;
37solver{1} = LN(model, @(model) MVA(model, options), lnoptions);
38AvgTable{1} = solver{1}.getAvgTable
41%
this method runs the NC solver in each layer
42lnoptions = LN.defaultOptions;
45options = NC.defaultOptions;
47solver{2} = LN(model, @(model) NC(model, options), lnoptions);
48AvgTable{2} = solver{2}.getAvgTable
51%
this method adapts with the features of each layer
52%solver{2} = LN(model, @(model) LINE(model, LINE.defaultOptions), lnoptions);
53%AvgTable{2} = solver{2}.getAvgTable