4c = 2; % number of servers
6model = Network(
'model');
7node{1} = Delay(model,
'Delay');
8node{2} = Queue(model,
'Queue1', SchedStrategy.PS);
9jobclass{1} = ClosedClass(model,
'Class1', N, node{1}, 0);
10jobclass{2} = ClosedClass(model,
'Class2', N/2, node{1}, 0);
11node{1}.setService(
jobclass{1}, Exp.fitMean(1.0)); % mean = 1
12node{1}.setService(
jobclass{2}, Exp.fitMean(2.0)); % mean = 1
13node{2}.setService(
jobclass{1}, Exp.fitMean(1.5)); % mean = 1.5
14node{2}.setService(
jobclass{2}, Exp.fitMean(2.5)); % mean = 1.5
15node{2}.setNumberOfServers(c);
17P = model.initRoutingMatrix();
18P{1,1} = model.serialRouting(node);
19P{2,2} = model.serialRouting(node);
22msT=MVA(model,
'exact').getAvgTable
24ldmodel = Network(
'ldmodel');
25node{1} = Delay(ldmodel,
'Delay');
26node{2} = Queue(ldmodel,
'Queue1', SchedStrategy.PS);
27jobclass{1} = ClosedClass(ldmodel,
'Class1', N, node{1}, 0);
28jobclass{2} = ClosedClass(ldmodel,
'Class2', N/2, node{1}, 0);
29node{1}.setService(
jobclass{1}, Exp.fitMean(1.0)); % mean = 1
30node{1}.setService(
jobclass{2}, Exp.fitMean(2.0)); % mean = 1
31node{2}.setService(
jobclass{1}, Exp.fitMean(1.5)); % mean = 1.5
32node{2}.setService(
jobclass{2}, Exp.fitMean(2.5)); % mean = 1.5
33node{2}.setLoadDependence(min(1:(N+N/2),c)); % multi-server with c servers
35P = ldmodel.initRoutingMatrix();
36P{1,1} = ldmodel.serialRouting(node);
37P{2,2} = ldmodel.serialRouting(node);
40lldAvgTableCTMC=CTMC(ldmodel).getAvgTable %exact
42lldAvgTableNC=NC(ldmodel).getAvgTable %exact
43lldAvgTableRD=NC(ldmodel,
'method',
'rd').getAvgTable
44lldAvgTableNRP=NC(ldmodel,
'method',
'nrp').getAvgTable
45lldAvgTableNRL=NC(ldmodel,
'method',
'nrl').getAvgTable
47lldAvgTableMVALD=MVA(ldmodel,
'method',
'exact').getAvgTable
48lldAvgTableQD=MVA(ldmodel,
'method',
'qd').getAvgTable
50lldAvgTableJMT=JMT(ldmodel,
'seed',23000,
'samples',5000).getAvgTable