LINE Solver
MATLAB API documentation
Loading...
Searching...
No Matches
fj_xmax_2.m
1%{ @file fj_xmax_2.m
2 % @brief Expected maximum of 2 exponential random variables
3 %
4 % @author LINE Development Team
5%}
6
7%{
8 % @brief Expected maximum of 2 exponential random variables
9 %
10 % @details
11 % Computes the expected value of the maximum of 2 independent
12 % exponential random variables with rates lambda1 and lambda2.
13 %
14 % Y_2^max = 1/lambda1 + 1/lambda2 - 1/(lambda1 + lambda2)
15 %
16 % This is the exact closed-form solution for K=2 case.
17 %
18 % For identical rates (lambda1 = lambda2 = lambda):
19 % Y_2^max = 2/lambda - 1/(2*lambda) = 3/(2*lambda) = 1.5/lambda = H_2/lambda
20 %
21 % which matches the general formula X_K^max = H_K/mu for exponentials.
22 %
23 % @par Syntax:
24 % @code
25 % Xmax = fj_xmax_2(lambda1, lambda2)
26 % Xmax = fj_xmax_2(lambda) % Same rate for both
27 % @endcode
28 %
29 % @par Parameters:
30 % <table>
31 % <tr><th>Name<th>Description
32 % <tr><td>lambda1<td>Rate of first exponential
33 % <tr><td>lambda2<td>Rate of second exponential (optional, default=lambda1)
34 % </table>
35 %
36 % @par Returns:
37 % <table>
38 % <tr><th>Name<th>Description
39 % <tr><td>Xmax<td>Expected maximum Y_2^max
40 % </table>
41 %
42 % @par Reference:
43 % A. Thomasian, "Analysis of Fork/Join and Related Queueing Systems",
44 % ACM Computing Surveys, Vol. 47, No. 2, Article 17, July 2014.
45 % Eq. (27) on page 17:17.
46%}
47function Xmax = fj_xmax_2(lambda1, lambda2)
48
49if nargin < 2
50 lambda2 = lambda1; % Default to identical rates
51end
52
53if lambda1 <= 0 || lambda2 <= 0
54 line_error(mfilename, 'Rates must be positive. Got lambda1=%.4f, lambda2=%.4f.', lambda1, lambda2);
55end
56
57% Y_2^max = 1/lambda1 + 1/lambda2 - 1/(lambda1 + lambda2)
58Xmax = 1/lambda1 + 1/lambda2 - 1/(lambda1 + lambda2);
59
60end