2%% Example of
class switching controlled by a reducible Markov chain
3% In
this variant the job remains either in
class 2 or class 3 forever
5% This example demonstrates a transient
class model where Class1 can
6%
switch to Class2 or Class3, but those
classes never
return to Class1.
7% This creates a reducible routing chain with transient states (Class1)
8% and recurrent states (Class2/Class3 cycles).
10model = Network(
'mm1cs');
13node{1} = Delay(model,
'Queue 0');
14node{2} = Delay(model,
'Queue 1');
15node{3} = Delay(model,
'Queue 2');
18jobclass{1} = ClosedClass(model,
'Class1', 1, node{1});
19jobclass{2} = ClosedClass(model,
'Class2', 0, node{1});
20jobclass{3} = ClosedClass(model,
'Class3', 0, node{1});
22node{1}.setService(
jobclass{1}, Exp.fitMean(1.000000)); % (Queue 1,Class1)
23node{1}.setService(
jobclass{2}, Exp.fitMean(1.000000)); % (Queue 1,Class2)
24node{1}.setService(
jobclass{3}, Exp.fitMean(1.000000)); % (Queue 1,Class3)
25node{2}.setService(
jobclass{2}, Exp.fitMean(1.000000)); % (Queue 1,Class2)
26node{3}.setService(
jobclass{3}, Exp.fitMean(1.000000)); % (Queue 2,Class3)
28P = model.initRoutingMatrix(); % initialize routing matrix
38model.printRoutingMatrix();
40solver{1} = MVA(model);
41AvgTable{1} = solver{1}.getAvgChainTable;