LINE Solver
MATLAB API documentation
Loading...
Searching...
No Matches
cs_transient_class.m
1clear node jobclass solver AvgTable;
2%% Example of class switching controlled by a reducible Markov chain
3% In this variant the job remains either in class 2 or class 3 forever
4%
5% This example demonstrates a transient class model where Class1 can
6% switch to Class2 or Class3, but those classes never return to Class1.
7% This creates a reducible routing chain with transient states (Class1)
8% and recurrent states (Class2/Class3 cycles).
9
10model = Network('mm1cs');
11
12%% Block 1: nodes
13node{1} = Delay(model, 'Queue 0');
14node{2} = Delay(model, 'Queue 1');
15node{3} = Delay(model, 'Queue 2');
16
17%% Block 2: classes
18jobclass{1} = ClosedClass(model, 'Class1', 1, node{1});
19jobclass{2} = ClosedClass(model, 'Class2', 0, node{1});
20jobclass{3} = ClosedClass(model, 'Class3', 0, node{1});
21
22node{1}.setService(jobclass{1}, Exp.fitMean(1.000000)); % (Queue 1,Class1)
23node{1}.setService(jobclass{2}, Exp.fitMean(1.000000)); % (Queue 1,Class2)
24node{1}.setService(jobclass{3}, Exp.fitMean(1.000000)); % (Queue 1,Class3)
25node{2}.setService(jobclass{2}, Exp.fitMean(1.000000)); % (Queue 1,Class2)
26node{3}.setService(jobclass{3}, Exp.fitMean(1.000000)); % (Queue 2,Class3)
27
28P = model.initRoutingMatrix(); % initialize routing matrix
29P{1,1}(1,1) = 0.2;
30P{2,2}(1,2) = 1.0;
31P{3,3}(1,3) = 1.0;
32P{1,2}(1,2) = 0.3;
33P{1,3}(1,3) = 0.5;
34P{2,2}(2,1) = 1;
35P{3,3}(3,1) = 1;
36model.link(P);
37
38model.printRoutingMatrix();
39
40solver{1} = MVA(model);
41AvgTable{1} = solver{1}.getAvgChainTable;
42AvgTable{1}
Definition mmt.m:92