2model = Network(
'model');
4node{1} = Delay(model,
'Delay');
5node{2} = Queue(model,
'Queue1', SchedStrategy.PS);
7jobclass{1} = ClosedClass(model,
'Class1', 1, node{1}, 0);
8node{1}.setService(
jobclass{1}, Exp.fitMean(1.0));
9node{2}.setService(
jobclass{1}, Exp.fitMean(2.0));
11jobclass{2} = ClosedClass(model,
'Class2', 3, node{1}, 0);
12node{1}.setService(
jobclass{2}, Erlang.fitMeanAndOrder(4.0,2));
13node{2}.setService(
jobclass{2}, HyperExp.fitMeanAndSCV(5.0,30.0));
23RDfluid = FLD(model).getCdfRespT()
24jmtoptions = JMT.defaultOptions;
25jmtoptions.samples = 1e5;
26jmtoptions.seed = 23000;
27RDsim = JMT(model, jmtoptions).getTranCdfRespT();
31for i=1:model.getNumberOfStations
32 subplot(model.getNumberOfStations,2,2*(i-1)+1)
33 semilogx(RDsim{i,1}(:,2),1-RDsim{i,1}(:,1),
'r')
35 semilogx(RDfluid{i,1}(:,2),1-RDfluid{i,1}(:,1),
'--')
36 legend('jmt-transient','fluid-steady','Location','Best');
37 title(['Tail: Node ',num2str(i),', Class ',num2str(1),', ',node{i}.serviceProcess{1}.name,
' service']);
39 subplot(model.getNumberOfStations,2,2*(i-1)+2)
40 semilogx(RDsim{i,2}(:,2),1-RDsim{i,2}(:,1),
'r')
42 semilogx(RDfluid{i,2}(:,2),1-RDfluid{i,2}(:,1),
'--')
43 legend('jmt-transient','fluid-steady','Location','Best');
44 title(['Tail: Node ',num2str(i),', Class ',num2str(2),', ',node{i}.serviceProcess{2}.name,
' service']);
48for i=1:model.getNumberOfStations
49 for c=1:model.getNumberOfClasses
50 AvgRespTfromCDFfluid(i,c) = diff(RDfluid{i,c}(:,1))
'*RDfluid{i,c}(2:end,2);
51 AvgRespTfromCDFsim(i,c) = diff(RDsim{i,c}(:,1))'*RDsim{i,c}(2:end,2);