3model = Network(
'model');
5node{1} = Delay(model,
'Delay');
6node{2} = Queue(model,
'Queue2', SchedStrategy.PS);
8jobclass{1} = ClosedClass(model,
'Class1', 1, node{1}, 0);
9jobclass{2} = ClosedClass(model,
'Class2', 0, node{1}, 0);
10jobclass{3} = ClosedClass(model,
'Class3', 0, node{1}, 0);
14node{1}.setService(
jobclass{1}, Exp(1/1));
15node{1}.setService(
jobclass{2}, Exp(1/1));
16node{1}.setService(
jobclass{3}, Exp(1/1));
18node{2}.setService(
jobclass{1}, Exp(1/1));
19node{2}.setService(
jobclass{2}, Erlang(1/2,2));
20node{2}.setService(
jobclass{3}, Exp(1/0.01));
22M = model.getNumberOfStations();
23K = model.getNumberOfClasses();
41options = FLD.defaultOptions;
42options.method =
'statedep';
43options.iter_max = 100;
44solver = FLD(model, options);
45AvgRespT = solver.getAvgRespT
46solver = FLD(model, options);
47RDfluid = solver.getCdfRespT();
50for i=1:model.getNumberOfStations
51 for c=1:model.getNumberOfClasses
52% plot(FC{i,c}(:,2),FC{i,c}(:,1)); hold all;
53 AvgRespTfromCDF(i,c) = diff(RDfluid{i,c}(:,1))
'*RDfluid{i,c}(2:end,2); %mean
54 PowerMoment2_R(i,c) = diff(RDfluid{i,c}(:,1))'*(RDfluid{i,c}(2:end,2).^2);
55 Variance_R(i,c) = PowerMoment2_R(i,c)-AvgRespTfromCDF(i,c)^2; %variance
56 SqCoeffOfVariationRespTfromCDF(i,c) = (Variance_R(i,c))/AvgRespTfromCDF(i,c)^2; %scv
60SqCoeffOfVariationRespTfromCDF