1%{ @file cache_mva_miss.m
2 % @brief Computes miss rates
using Mean Value Analysis
4 % @author LINE Development Team
8 % @brief Computes cache miss rates
using Mean Value Analysis
11 % This function computes global and per-item miss rates
for cache models
12 %
using Mean Value Analysis with given item popularities and routing.
16 % [M, Mk] = cache_mva_miss(p, m, R)
21 % <tr><th>Name<th>Description
22 % <tr><td>p<td>Item popularity probabilities
23 % <tr><td>m<td>Cache capacity vector
24 % <tr><td>R<td>Routing probabilities
29 % <tr><th>Name<th>Description
30 % <tr><td>M<td>Global miss rate
31 % <tr><td>Mk<td>Per-item miss rate
34function [M,Mk]=cache_mva_miss(p,m,R)
37if sum(m)==0 || min(m)<0
43 [~,Mj]=cache_mva_miss(p,oner(m,j),R);
45 w(k,j)=prod(R(1:j,k))*p(k)^j*abs(Mj(k));
49 x(j) = 1/sum(abs(w(:,j)));
54 Mk(k)=Mk(k)-x(j)*m(j)*w(k,j);