2 % @brief Cache miss rate computation
4 % @author LINE Development Team
8 % @brief Computes miss rates
for a cache system
11 % This function computes various miss rate metrics
for a cache system
12 % with given item popularity distribution and cache capacity.
16 % [M,MU,MI,pi0] = cache_miss(gamma, m)
17 % [M,MU,MI,pi0] = cache_miss(gamma, m, lambda)
22 % <tr><th>Name<th>Description
23 % <tr><td>gamma<td>Item popularity probabilities
24 % <tr><td>m<td>Cache capacity
25 % <tr><td>lambda<td>(Optional) Arrival rates per user per item
30 % <tr><th>Name<th>Description
31 % <tr><td>M<td>Global miss rate
32 % <tr><td>MU<td>Per-user miss rate
33 % <tr><td>MI<td>Per-item miss rate
34 % <tr><td>pi0<td>Per-item miss probability
39function [M,MU,MI,pi0]=cache_miss(gamma,m,lambda)
41% MU: per-user miss rate
42% MI: per-item miss rate
43% pi0: per-item miss probability
45M = cache_erec(gamma,ma) / cache_erec(gamma,m);
52 pi0(k) = cache_erec(gamma(setdiff(1:n,k),:),m) / cache_erec(gamma,m);
53 MU(v) = MU(v) + (lambda(v,k,1))*pi0(k);
58 MI(k) = MI(k) + sum(lambda(:,k,1))*pi0(k);