LINE Solver
MATLAB API documentation
Loading...
Searching...
No Matches
ag_tandem_open.m
1%% Open Tandem Queue with MAM
2%
3% This example demonstrates MAM with RCAT methods on an open tandem queueing network
4% (M/M/1 -> M/M/1) using the INAP algorithm.
5%
6% Reference: Marin and Rota-Bulo', "A Mean-Field Analysis of a Class of
7% Interactive Distributed Systems", MASCOTS 2009
8%
9% Copyright (c) 2012-2025, Imperial College London
10% All rights reserved.
11
12clear; clc;
13
14%% Parameters
15lambda = 0.5; % Arrival rate
16mu1 = 1.0; % Service rate at queue 1
17mu2 = 1.5; % Service rate at queue 2
18
19%% Create model: Source -> Queue1 -> Queue2 -> Sink
20model = Network('Tandem-MM1');
21
22source = Source(model, 'Source');
23queue1 = Queue(model, 'Queue1', SchedStrategy.FCFS);
24queue2 = Queue(model, 'Queue2', SchedStrategy.FCFS);
25sink = Sink(model, 'Sink');
26
27oclass = OpenClass(model, 'Class1');
28source.setArrival(oclass, Exp(lambda));
29queue1.setService(oclass, Exp(mu1));
30queue2.setService(oclass, Exp(mu2));
31
32model.link(Network.serialRouting({source, queue1, queue2, sink}));
33
34%% Solve with MAM using INAP method (default)
35solverINAP = MAM(model, 'method', 'inap');
36avgTableINAP = solverINAP.getAvgTable()
37
38%% Solve with MAM using exact method (AutoCAT)
39solverExact = MAM(model, 'method', 'exact');
40avgTableExact = solverExact.getAvgTable()
41
42%% Compare with MVA
43solverMVA = MVA(model);
44avgTableMVA = solverMVA.getAvgTable()