1classdef SolverNC < NetworkSolver
2 % SolverNC Normalizing Constant solver
for product-form networks
4 % SolverNC implements normalizing constant algorithms
for analyzing closed
5 % product-form queueing networks. It computes the normalizing constant and
6 % associated performance measures efficiently without explicitly enumerating
7 % all network states, making it suitable
for medium to large closed networks.
9 % @brief Normalizing constant solver
for efficient closed network analysis
11 % Key characteristics:
12 % - Normalizing constant computation
for product-form networks
13 % - Avoids
explicit state enumeration
14 % - Efficient algorithms
for closed networks
15 % - Multiple computational methods (exact, approximation)
16 % - State probability computation via normalization
19 % - Exact normalizing constant computation
20 % - IMCI (Improved Modular Computer Implementation)
21 % - Linearizer methods (LS, LE)
22 % - Interpolation methods (MMINT2, GLEINT)
23 % - Approximation methods (CA, Panacea)
25 % SolverNC
is ideal
for:
26 % - Closed product-form networks
27 % - Medium to large population networks
28 % - Systems requiring efficient exact solutions
29 % - Networks with complex routing patterns
30 % - Performance analysis requiring state probabilities
34 % solver = SolverNC(model,
'method',
'exact');
35 % solver.getProbAggr(); % State probabilities
36 % solver.getNormalizingConstant(); % Normalizing constant
39 % Copyright (c) 2012-2026, Imperial College London
40 % All rights reserved.
43 function self = SolverNC(model,varargin)
44 % SOLVERNC Create a Normalizing Constant solver instance
46 % @brief Creates an NC solver for product-form network analysis
47 % @param model Network model to be analyzed via normalizing constant methods
48 % @param varargin Optional parameters (method, tolerance, etc.)
49 % @return self SolverNC instance configured for NC analysis
51 self@NetworkSolver(model, mfilename);
52 self.setOptions(Solver.parseOptions(varargin, self.defaultOptions));
56 runtime = runAnalyzer(self, options)
57 Pnir = getProb(self, node, state)
58 Pnir = getProbAggr(self, node, state_a)
60 Pn = getProbSysAggr(self)
61 RD = getCdfRespT(self, R);
63 function [normConst,lNormConst] = getNormalizingConstant(self)
64 normConst = exp(getProbNormConstAggr(self));
65 lNormConst = getProbNormConstAggr(self);
68 [lNormConst] = getProbNormConstAggr(self)
70 function sn = getStruct(self)
73 % Get data structure summarizing the model
74 sn = self.model.getStruct(
false); %no need
for initial state
77 function [allMethods] = listValidMethods(self)
78 % allMethods = LISTVALIDMETHODS()
79 % List valid methods
for this solver
80 sn = self.model.getStruct();
81 allMethods = {
'default',
'exact',
'imci',
'ls',...
82 'le',
'mmint2',
'gleint',
'panacea',
'ca',...
84 'propfair',
'comom',
'cub',...
85 'rd',
'nrp',
'nrl',
'gm',
'mem'};
91 function featSupported = getFeatureSet()
92 % FEATSUPPORTED = GETFEATURESET()
94 featSupported = SolverFeatureSet;
95 featSupported.setTrue({
'Sink',
'Source',...
96 'ClassSwitch',
'Delay',
'DelayStation',
'Queue',...
97 'APH',
'Coxian',
'Erlang',
'Det',
'Exp',
'HyperExp',...
98 'StatelessClassSwitcher',
'InfiniteServer',...
99 'SharedServer',
'Buffer',
'Dispatcher',...
100 'Server',
'JobSink',
'RandomSource',
'ServiceTunnel',...
101 'SchedStrategy_INF',
'SchedStrategy_PS',
'SchedStrategy_SIRO',...
102 'SchedStrategy_LCFS',
'SchedStrategy_LCFSPR',...
103 'RoutingStrategy_PROB',
'RoutingStrategy_RAND',...
104 'SchedStrategy_FCFS',
'ClosedClass',
'SelfLoopingClass',...
105 'Cache',
'CacheClassSwitcher',
'OpenClass', ...
106 'ReplacementStrategy_RR',
'ReplacementStrategy_FIFO'});
110 function [bool, featSupported] = supports(model)
111 % [BOOL, FEATSUPPORTED] = SUPPORTS(MODEL)
113 featUsed = model.getUsedLangFeatures();
114 featSupported = SolverNC.getFeatureSet();
115 bool = SolverFeatureSet.supports(featSupported, featUsed);
118 function options = defaultOptions()
119 % OPTIONS = DEFAULTOPTIONS()
120 options = SolverOptions('NC');
123 function libs = getLibrariesUsed(sn, options)
124 % GETLIBRARIESUSED Get list of external libraries used by NC solver
125 % NC uses internal normalizing constant algorithms, no external libraries needed