LINE Solver
MATLAB API documentation
Loading...
Searching...
No Matches
SolverAUTO.m
1classdef SolverAUTO
2 % SolverAuto Automatic solver selection based on model characteristics
3 %
4 % SolverAuto is an intelligent solver that automatically selects the most
5 % appropriate solution method based on the characteristics of the queueing
6 % network model. It analyzes model properties such as network type, class
7 % types, scheduling policies, and size to determine the optimal solver.
8 %
9 % @brief Intelligent automatic solver selection for queueing network models
10 %
11 % The solver can choose from multiple candidate solvers including:
12 % - MVA (Mean Value Analysis) for product-form networks
13 % - NC (Normalizing Constant) for closed networks
14 % - MAM (Matrix Analytic Methods) for non-product-form features
15 % - Fluid approximation for large-scale models
16 % - JMT simulation for complex models
17 % - SSA (Stochastic State-space Analysis) for detailed analysis
18 % - CTMC (Continuous Time Markov Chain) for small state spaces
19 % - LQNS for layered queueing networks
20 %
21 % The selection process considers model complexity, solver accuracy,
22 % and computational efficiency to provide optimal performance.
23
24 % Copyright (c) 2012-2026, Imperial College London
25 % All rights reserved.
26
27 properties (Hidden, Access = public)
28 enableChecks;
29 end
30
31 properties (Hidden)
32 % Network solvers
33 CANDIDATE_MVA = 1;
34 CANDIDATE_NC = 2;
35 CANDIDATE_MAM = 3;
36 CANDIDATE_FLUID = 4;
37 CANDIDATE_JMT = 5;
38 CANDIDATE_SSA = 6;
39 CANDIDATE_CTMC = 7;
40 CANDIDATE_DES = 8;
41 % LayeredNetwork solvers
42 CANDIDATE_LQNS = 1;
43 CANDIDATE_LN_NC = 2;
44 CANDIDATE_LN_MVA = 3;
45 CANDIDATE_LN_MAM = 4;
46 CANDIDATE_LN_FLUID = 5;
47 % Environment solvers
48 CANDIDATE_ENV_MVA = 1;
49 CANDIDATE_ENV_NC = 2;
50 CANDIDATE_ENV_FLUID = 3;
51 end
52
53 properties (Hidden)
54 candidates; % feasible solvers
55 solvers;
56 options;
57 end
58
59 properties
60 model;
61 name;
62 end
63
64 methods
65 % Constructor
66 function self = SolverAUTO(model, varargin)
67 % SOLVERAUTO Create an automatic solver instance
68 %
69 % @brief Creates a SolverAUTO instance that automatically selects solvers
70 % @param model Network or LayeredNetwork model to be solved
71 % @param varargin Optional parameters for solver configuration
72 % @return self SolverAuto instance configured for the given model
73 self.options = Solver.parseOptions(varargin, Solver.defaultOptions);
74 self.model = model;
75 self.name = 'SolverAuto';
76 if self.options.verbose
77 %line_printf('Running LINE version %s',model.getVersion);
78 end
79 switch self.options.method
80 case 'sim'
81 % Best simulator - JMT for most cases
82 self.options.method = 'default';
83 switch class(model)
84 case 'Network'
85 self.solvers{1,1} = SolverJMT(model,self.options);
86 case 'LayeredNetwork'
87 self.solvers{1,1} = SolverLQNS(model,self.options);
88 case 'Environment'
89 self.solvers{1,1} = SolverENV(model,@(m) SolverJMT(m,'verbose',false),self.options);
90 end
91 case 'exact'
92 % Best exact method - NC for closed, CTMC for small state space
93 self.options.method = 'default';
94 switch class(model)
95 case 'Network'
96 sn = model.getStruct(true);
97 if all(isfinite(sn.njobs)) % closed network
98 self.solvers{1,1} = SolverNC(model,self.options);
99 else
100 self.solvers{1,1} = SolverCTMC(model,self.options);
101 end
102 case 'LayeredNetwork'
103 self.solvers{1,1} = SolverLN(model,@(m) SolverNC(m,'verbose',false),self.options);
104 case 'Environment'
105 self.solvers{1,1} = SolverENV(model,@(m) SolverNC(m,'verbose',false),self.options);
106 end
107 case 'fast'
108 % Fast approximate method - MVA (fastest analytical)
109 self.options.method = 'default';
110 switch class(model)
111 case 'Network'
112 self.solvers{1,1} = SolverMVA(model,self.options);
113 case 'LayeredNetwork'
114 self.solvers{1,1} = SolverLN(model,@(m) SolverMVA(m,'verbose',false),self.options);
115 case 'Environment'
116 self.solvers{1,1} = SolverENV(model,@(m) SolverMVA(m,'verbose',false),self.options);
117 end
118 case 'accurate'
119 % Accurate approximate method - Fluid or MAM
120 self.options.method = 'default';
121 switch class(model)
122 case 'Network'
123 self.solvers{1,1} = SolverFluid(model,self.options);
124 case 'LayeredNetwork'
125 self.solvers{1,1} = SolverLN(model,@(m) SolverFluid(m,'verbose',false),self.options);
126 case 'Environment'
127 self.solvers{1,1} = SolverENV(model,@(m) SolverFluid(m,'verbose',false),self.options);
128 end
129 case 'mam'
130 self.options.method = 'default';
131 self.solvers{1,1} = SolverMAM(model,self.options);
132 case 'mva'
133 self.options.method = 'default';
134 self.solvers{1,1} = SolverMVA(model,self.options);
135 case 'nc'
136 self.options.method = 'default';
137 self.solvers{1,1} = SolverNC(model,self.options);
138 case 'fluid'
139 self.options.method = 'default';
140 self.solvers{1,1} = SolverFluid(model,self.options);
141 case 'jmt'
142 self.options.method = 'default';
143 self.solvers{1,1} = SolverJMT(model,self.options);
144 case 'ssa'
145 self.options.method = 'default';
146 self.solvers{1,1} = SolverSSA(model,self.options);
147 case 'ctmc'
148 self.options.method = 'default';
149 self.solvers{1,1} = SolverCTMC(model,self.options);
150 case 'des'
151 self.options.method = 'default';
152 self.solvers{1,1} = SolverDES(model,self.options);
153 case 'env'
154 self.options.method = 'default';
155 self.solvers{1,1} = SolverENV(model,@(m) SolverMVA(m,'verbose',false),self.options);
156 case 'ln'
157 self.options.method = 'default';
158 self.solvers{1,1} = SolverLN(model,self.options);
159 case 'lqns'
160 self.options.method = 'default';
161 self.solvers{1,1} = SolverLQNS(model,self.options);
162 case {'default','heur'} % 'ai' method not yet available
163 %solvers sorted from fastest to slowest
164 self.solvers = {};
165 switch class(model)
166 case 'Network'
167 self.solvers{1,self.CANDIDATE_MAM} = SolverMAM(model);
168 self.solvers{1,self.CANDIDATE_MVA} = SolverMVA(model);
169 self.solvers{1,self.CANDIDATE_NC} = SolverNC(model);
170 self.solvers{1,self.CANDIDATE_FLUID} = SolverFluid(model);
171 self.solvers{1,self.CANDIDATE_JMT} = SolverJMT(model);
172 self.solvers{1,self.CANDIDATE_SSA} = SolverSSA(model);
173 self.solvers{1,self.CANDIDATE_CTMC} = SolverCTMC(model);
174 self.solvers{1,self.CANDIDATE_DES} = SolverDES(model);
175 boolSolver = false(length(self.solvers),1);
176 for s=1:length(self.solvers)
177 boolSolver(s) = self.solvers{s}.supports(self.model);
178 self.solvers{s}.setOptions(self.options);
179 end
180 self.candidates = {self.solvers{find(boolSolver)}}; %#ok<FNDSB>
181 case 'LayeredNetwork'
182 self.solvers{1,self.CANDIDATE_LQNS} = SolverLQNS(model,self.options);
183 self.solvers{1,self.CANDIDATE_LN_NC} = SolverLN(model,@(m) SolverNC(m,'verbose', false),self.options);
184 self.solvers{1,self.CANDIDATE_LN_MVA} = SolverLN(model,@(m) SolverMVA(m,'verbose', false),self.options);
185 self.solvers{1,self.CANDIDATE_LN_MAM} = SolverLN(model,@(m) SolverMAM(m,'verbose', false),self.options);
186 self.solvers{1,self.CANDIDATE_LN_FLUID} = SolverLN(model,@(m) SolverFluid(m,'verbose', false),self.options);
187 self.candidates = self.solvers;
188 case 'Environment'
189 self.solvers{1,self.CANDIDATE_ENV_MVA} = SolverENV(model,@(m) SolverMVA(m,'verbose', false),self.options);
190 self.solvers{1,self.CANDIDATE_ENV_NC} = SolverENV(model,@(m) SolverNC(m,'verbose', false),self.options);
191 self.solvers{1,self.CANDIDATE_ENV_FLUID} = SolverENV(model,@(m) SolverFluid(m,'verbose', false),self.options);
192 self.candidates = self.solvers;
193 end
194 end
195 %turn off warnings temporarily
196 wstatus = warning('query');
197 warning off;
198 warning(wstatus);
199 end
200
201 function sn = getStruct(self)
202 % QN = GETSTRUCT()
203
204 % Get data structure summarizing the model
205 sn = self.model.getStruct(true);
206 end
207
208 function out = getName(self)
209 % OUT = GETNAME()
210 % Get solver name
211 out = self.name;
212 end
213
214 function model = getModel(self)
215 % MODEL = GETMODEL()
216 % Get the model being solved
217 model = self.model;
218 end
219
220 function results = getResults(self)
221 % RESULTS = GETRESULTS()
222 % Return results data structure from chosen solver
223 results = self.delegate('getResults', 1);
224 end
225
226 function bool = hasResults(self)
227 % BOOL = HASRESULTS()
228 % Check if the solver has computed results
229 bool = self.delegate('hasResults', 1);
230 end
231
232 function options = getOptions(self)
233 % OPTIONS = GETOPTIONS()
234 % Return options data structure
235 options = self.options;
236 end
237
238 function self = setOptions(self, options)
239 % SELF = SETOPTIONS(OPTIONS)
240 % Set a new options data structure for all candidate solvers
241 self.options = options;
242 for s = 1:length(self.solvers)
243 if ~isempty(self.solvers{s})
244 self.solvers{s}.setOptions(options);
245 end
246 end
247 end
248
249 function bool = supports(self, model)
250 % BOOL = SUPPORTS(MODEL)
251 % Check if any candidate solver supports the given model
252 bool = false;
253 for s = 1:length(self.solvers)
254 if ~isempty(self.solvers{s}) && self.solvers{s}.supports(model)
255 bool = true;
256 return;
257 end
258 end
259 end
260
261 function allMethods = listValidMethods(self)
262 % ALLMETHODS = LISTVALIDMETHODS()
263 % List valid methods from all candidate solvers
264 allMethods = {'default', 'auto', 'heur', 'sim', 'exact', 'fast', 'accurate'}; % 'ai' not yet available
265 for s = 1:length(self.solvers)
266 if ~isempty(self.solvers{s})
267 try
268 solverMethods = self.solvers{s}.listValidMethods();
269 allMethods = unique([allMethods, solverMethods]);
270 catch
271 % Solver doesn't implement listValidMethods
272 end
273 end
274 end
275 end
276
277 end
278
279 methods
280 % delegate execution of method to chosen solver
281 varargout = delegate(self, method, nretout, varargin);
282
283 % chooseSolver: choses a solver from static properties of the model
284 solver = chooseSolver(self, method);
285 % Heuristic choice of solver
286 solver = chooseSolverHeur(self, method);
287 % Heuristic choice of solver for Avg* methods
288 solver = chooseAvgSolverHeur(self);
289
290 end
291
292 methods
293 function reset(self)
294 for s=1:length(self.solvers)
295 self.solvers{s}.reset();
296 end
297 end
298 function setChecks(self,bool)
299 for s=1:length(self.solvers)
300 self.solvers{s}.setChecks(bool);
301 end
302 end
303 end
304
305 methods
306 function AvgChainTable = getAvgChainTable(self)
307 % [AVGCHAINTABLE] = GETAVGCHAINTABLE(self)
308 try
309 AvgChainTable = self.delegate('getAvgChainTable', 1);
310 catch
311 line_error(mfilename, 'Fatal error in getAvgChainTable.')
312 end
313 end
314
315 function [AvgQLenTable, QT] = getAvgQLenTable(self, Q, keepDisabled)
316 % [AVGQLENTABLE, QT] = GETAVGQLENTABLE(self, Q, keepDisabled)
317 if nargin < 2
318 Q = [];
319 end
320 if nargin < 3
321 keepDisabled = false;
322 end
323 [AvgQLenTable, QT] = self.delegate('getAvgQLenTable', 2, Q, keepDisabled);
324 end
325
326 function [AvgTputTable, TT] = getAvgTputTable(self, T, keepDisabled)
327 % [AVGTPUTTABLE, TT] = GETAVGTPUTTABLE(self, T, keepDisabled)
328 if nargin < 2
329 T = [];
330 end
331 if nargin < 3
332 keepDisabled = false;
333 end
334 [AvgTputTable, TT] = self.delegate('getAvgTputTable', 2, T, keepDisabled);
335 end
336
337 function [AvgRespTTable, RT] = getAvgRespTTable(self, R, keepDisabled)
338 % [AVGRESPTTABLE, RT] = GETAVGRESPTTABLE(self, R, keepDisabled)
339 if nargin < 2
340 R = [];
341 end
342 if nargin < 3
343 keepDisabled = false;
344 end
345 [AvgRespTTable, RT] = self.delegate('getAvgRespTTable', 2, R, keepDisabled);
346 end
347
348 function [AvgUtilTable, UT] = getAvgUtilTable(self, U, keepDisabled)
349 % [AVGUTILTABLE, UT] = GETAVGUTILTABLE(self, U, keepDisabled)
350 if nargin < 2
351 U = [];
352 end
353 if nargin < 3
354 keepDisabled = false;
355 end
356 [AvgUtilTable, UT] = self.delegate('getAvgUtilTable', 2, U, keepDisabled);
357 end
358
359 function AvgSysTable = getAvgSysTable(self)
360 % [AVGSYSTABLE] = GETAVGSYSTABLE(self)
361 AvgSysTable = self.delegate('getAvgSysTable', 1);
362 end
363
364 function AvgNodeTable = getAvgNodeTable(self)
365 % [AVGNODETABLE] = GETAVGNODETABLE(self)
366 AvgNodeTable = self.delegate('getAvgNodeTable', 1);
367 end
368
369 function AvgTable = getAvgTable(self)
370 % [AVGTABLE] = GETAVGTABLE(self)
371 AvgTable = self.delegate('getAvgTable', 1);
372 end
373
374 function [QN,UN,RN,TN,AN,WN] = getAvg(self,Q,U,R,T)
375 %[QN,UN,RN,TN] = GETAVG(SELF,Q,U,R,T)
376
377 if nargin>1
378 [QN,UN,RN,TN,AN,WN] = self.delegate('getAvg', 6, Q,U,R,T);
379 else
380 [QN,UN,RN,TN,AN,WN] = self.delegate('getAvg', 6);
381 end
382 end
383
384 function [QNc,UNc,RNc,TNc] = getAvgChain(self,Q,U,R,T)
385 %[QNC,UNC,RNC,TNC] = GETAVGCHAIN(SELF,Q,U,R,T)
386
387 if nargin>1
388 [QNc,UNc,RNc,TNc] = self.delegate('getAvgChain', 4, Q,U,R,T);
389 else
390 [QNc,UNc,RNc,TNc] = self.delegate('getAvgChain', 4);
391 end
392 end
393
394 function [CNc,XNc] = getAvgSys(self,R,T)
395 %[CNC,XNC] = GETAVGSYS(SELF,R,T)
396
397 if nargin>1
398 [CNc,XNc] = self.delegate('getAvgSys', 2, R,T);
399 else
400 [CNc,XNc] = self.delegate('getAvgSys', 2);
401 end
402 end
403
404 function [QN,UN,RN,TN,AN,WN] = getAvgNode(self,Q,U,R,T,A)
405 if nargin>1
406 [QN,UN,RN,TN,AN,WN] = self.delegate('getAvgNode', 6, Q,U,R,T,A);
407 else
408 [QN,UN,RN,TN,AN,WN] = self.delegate('getAvgNode', 6);
409 end
410 end
411
412 function [AN] = getAvgArvRChain(self,A)
413 if nargin>1
414 AN = self.delegate('getAvgArvRChain', 1, A);
415 else
416 AN = self.delegate('getAvgArvRChain', 1);
417 end
418 end
419
420 function [QN] = getAvgQLenChain(self,Q)
421 if nargin>1
422 QN = self.delegate('getAvgQLenChain', 1, Q);
423 else
424 QN = self.delegate('getAvgQLenChain', 1);
425 end
426 end
427
428 function [UN] = getAvgUtilChain(self,U)
429 if nargin>1
430 UN = self.delegate('getAvgUtilChain', 1, U);
431 else
432 UN = self.delegate('getAvgUtilChain', 1);
433 end
434 end
435
436 function [RN] = getAvgRespTChain(self,R)
437 if nargin>1
438 RN = self.delegate('getAvgRespTChain', 1, R);
439 else
440 RN = self.delegate('getAvgRespTChain', 1);
441 end
442 end
443
444 function [TN] = getAvgTputChain(self,T)
445 if nargin>1
446 TN = self.delegate('getAvgTputChain', 1, T);
447 else
448 TN = self.delegate('getAvgTputChain', 1);
449 end
450 end
451
452 function [RN] = getAvgSysRespT(self,R)
453 if nargin>1
454 RN = self.delegate('getAvgSysRespT', 1, R);
455 else
456 RN = self.delegate('getAvgSysRespT', 1);
457 end
458 end
459
460 function [TN] = getAvgSysTput(self,T)
461 if nargin>1
462 TN = self.delegate('getAvgSysTput', 1, T);
463 else
464 TN = self.delegate('getAvgSysTput', 1);
465 end
466 end
467
468 function [QNt,UNt,TNt] = getTranAvg(self,Qt,Ut,Tt)
469 % [QNT,UNT,TNT] = GETTRANAVG(SELF,QT,UT,TT)
470
471 if nargin>1
472 [QNt,UNt,TNt] = self.delegate('getTranAvg', 3, Qt,Ut,Tt);
473 else
474 [QNt,UNt,TNt] = self.delegate('getTranAvg', 3);
475 end
476 end
477
478 function RD = getTranCdfPassT(self, R)
479 % RD = GETTRANCDFPASST(R)
480
481 if nargin>1
482 RD = self.delegate('getTranCdfPassT', 1, R);
483 else
484 RD = self.delegate('getTranCdfPassT', 1);
485 end
486 end
487
488 function RD = getTranCdfRespT(self, R)
489 % RD = GETTRANCDFRESPT(R)
490
491 if nargin>1
492 RD = self.delegate('getTranCdfRespT', 1, R);
493 else
494 RD = self.delegate('getTranCdfRespT', 1);
495 end
496 end
497
498 function [Pi_t, SSnode] = getTranProb(self, node)
499 % [PI, SS] = GETTRANPROB(NODE)
500 [Pi_t, SSnode] = self.delegate('getTranProb', 2, node);
501 end
502
503 function [Pi_t, SSnode_a] = getTranProbAggr(self, node)
504 % [PI, SS] = GETTRANPROBAGGR(NODE)
505 [Pi_t, SSnode_a] = self.delegate('getTranProbAggr', 2, node);
506 end
507
508 function [Pi_t, SSsys] = getTranProbSys(self)
509 % [PI, SS] = GETTRANPROBSYS()
510 [Pi_t, SSsys] = self.delegate('getTranProbSys', 2);
511 end
512
513 function [Pi_t, SSsysa] = getTranProbSysAggr(self)
514 % [PI, SS] = GETTRANPROBSYSAGGR()
515 [Pi_t, SSsysa] = self.delegate('getTranProbSysAggr', 2);
516 end
517
518 function sampleNodeState = sample(self, node, numSamples)
519 sampleNodeState = self.delegate('sample', 1, node, numSamples);
520 end
521
522 function stationStateAggr = sampleAggr(self, node, numSamples)
523 stationStateAggr = self.delegate('sampleAggr', 1, node, numSamples);
524 end
525
526 function tranSysState = sampleSys(self, numSamples)
527 tranSysState = self.delegate('sampleSys', 1, numSamples);
528 end
529
530 function sysStateAggr = sampleSysAggr(self, numSamples)
531 sysStateAggr = self.delegate('sampleSysAggr', 1, numSamples);
532 end
533
534 function RD = getCdfRespT(self, R)
535 if nargin>1
536 RD = self.delegate('getCdfRespT', 1, R);
537 else
538 RD = self.delegate('getCdfRespT', 1);
539 end
540 end
541
542 function Pnir = getProb(self, node, state)
543 Pnir = self.delegate('getProb', 1, node, state);
544 end
545
546 function Pnir = getProbAggr(self, node, state_a)
547 Pnir = self.delegate('getProbAggr', 1, node, state_a);
548 end
549
550 function Pn = getProbSys(self)
551 Pn = self.delegate('getProbSys',1);
552 end
553
554 function Pn = getProbSysAggr(self)
555 Pn = self.delegate('getProbSysAggr',1);
556 end
557
558 function [logNormConst] = getProbNormConstAggr(self)
559 logNormConst = self.delegate('getProbNormConstAggr',1);
560 end
561
562 % Basic metric methods
563 function QN = getAvgQLen(self)
564 % QN = GETAVGQLEN()
565 % Compute average queue-lengths at steady-state
566 QN = self.delegate('getAvgQLen', 1);
567 end
568
569 function UN = getAvgUtil(self)
570 % UN = GETAVGUTIL()
571 % Compute average utilizations at steady-state
572 UN = self.delegate('getAvgUtil', 1);
573 end
574
575 function RN = getAvgRespT(self)
576 % RN = GETAVGRESPT()
577 % Compute average response times at steady-state
578 RN = self.delegate('getAvgRespT', 1);
579 end
580
581 function WN = getAvgResidT(self)
582 % WN = GETAVGRESIDT()
583 % Compute average residence times at steady-state
584 WN = self.delegate('getAvgResidT', 1);
585 end
586
587 function WT = getAvgWaitT(self)
588 % WT = GETAVGWAITT()
589 % Compute average waiting time in queue excluding service
590 WT = self.delegate('getAvgWaitT', 1);
591 end
592
593 function TN = getAvgTput(self)
594 % TN = GETAVGTPUT()
595 % Compute average throughputs at steady-state
596 TN = self.delegate('getAvgTput', 1);
597 end
598
599 function AN = getAvgArvR(self)
600 % AN = GETAVGARVR()
601 % Compute average arrival rate at steady-state
602 AN = self.delegate('getAvgArvR', 1);
603 end
604
605 % Additional chain methods
606 function [WN] = getAvgResidTChain(self, W)
607 if nargin > 1
608 WN = self.delegate('getAvgResidTChain', 1, W);
609 else
610 WN = self.delegate('getAvgResidTChain', 1);
611 end
612 end
613
614 function [QN] = getAvgNodeQLenChain(self, Q)
615 if nargin > 1
616 QN = self.delegate('getAvgNodeQLenChain', 1, Q);
617 else
618 QN = self.delegate('getAvgNodeQLenChain', 1);
619 end
620 end
621
622 function [UN] = getAvgNodeUtilChain(self, U)
623 if nargin > 1
624 UN = self.delegate('getAvgNodeUtilChain', 1, U);
625 else
626 UN = self.delegate('getAvgNodeUtilChain', 1);
627 end
628 end
629
630 function [RN] = getAvgNodeRespTChain(self, R)
631 if nargin > 1
632 RN = self.delegate('getAvgNodeRespTChain', 1, R);
633 else
634 RN = self.delegate('getAvgNodeRespTChain', 1);
635 end
636 end
637
638 function [WN] = getAvgNodeResidTChain(self, W)
639 if nargin > 1
640 WN = self.delegate('getAvgNodeResidTChain', 1, W);
641 else
642 WN = self.delegate('getAvgNodeResidTChain', 1);
643 end
644 end
645
646 function [TN] = getAvgNodeTputChain(self, T)
647 if nargin > 1
648 TN = self.delegate('getAvgNodeTputChain', 1, T);
649 else
650 TN = self.delegate('getAvgNodeTputChain', 1);
651 end
652 end
653
654 function [AN] = getAvgNodeArvRChain(self, A)
655 if nargin > 1
656 AN = self.delegate('getAvgNodeArvRChain', 1, A);
657 else
658 AN = self.delegate('getAvgNodeArvRChain', 1);
659 end
660 end
661
662 % Additional table method
663 function [AvgNodeChainTable, QTc, UTc, RTc, WTc, ATc, TTc] = getAvgNodeChainTable(self, Q, U, R, T)
664 if nargin > 1
665 [AvgNodeChainTable, QTc, UTc, RTc, WTc, ATc, TTc] = self.delegate('getAvgNodeChainTable', 7, Q, U, R, T);
666 else
667 [AvgNodeChainTable, QTc, UTc, RTc, WTc, ATc, TTc] = self.delegate('getAvgNodeChainTable', 7);
668 end
669 end
670
671 % Probability method
672 function Pmarg = getProbMarg(self, node, jobclass, state_m)
673 % PMARG = GETPROBMARG(NODE, JOBCLASS, STATE_M)
674 % Return marginalized state probability for station and class
675 Pmarg = self.delegate('getProbMarg', 1, node, jobclass, state_m);
676 end
677
678 % Distribution method
679 function RD = getCdfPassT(self, R)
680 % RD = GETCDFPASST(R)
681 % Return cumulative distribution of passage times at steady-state
682 if nargin > 1
683 RD = self.delegate('getCdfPassT', 1, R);
684 else
685 RD = self.delegate('getCdfPassT', 1);
686 end
687 end
688
689 % Percentile method
690 function [PercRT, PercTable] = getPerctRespT(self, percentiles, jobclass)
691 % [PERCRT, PERCTABLE] = GETPERCTRESPT(SELF, PERCENTILES, JOBCLASS)
692 % Extract response time percentiles from CDF or solver-specific results
693 if nargin < 3
694 [PercRT, PercTable] = self.delegate('getPerctRespT', 2, percentiles);
695 else
696 [PercRT, PercTable] = self.delegate('getPerctRespT', 2, percentiles, jobclass);
697 end
698 end
699
700 % Handle methods
701 function [Q, U, R, T, A, W] = getAvgHandles(self)
702 % [Q,U,R,T,A,W] = GETAVGHANDLES()
703 [Q, U, R, T, A, W] = self.delegate('getAvgHandles', 6);
704 end
705
706 function [Qt, Ut, Tt] = getTranHandles(self)
707 % [QT,UT,TT] = GETTRANHANDLES()
708 [Qt, Ut, Tt] = self.delegate('getTranHandles', 3);
709 end
710
711 function Q = getAvgQLenHandles(self)
712 % Q = GETAVGQLENHANDLES()
713 Q = self.delegate('getAvgQLenHandles', 1);
714 end
715
716 function U = getAvgUtilHandles(self)
717 % U = GETAVGUTILHANDLES()
718 U = self.delegate('getAvgUtilHandles', 1);
719 end
720
721 function R = getAvgRespTHandles(self)
722 % R = GETAVGRESPTHANDLES()
723 R = self.delegate('getAvgRespTHandles', 1);
724 end
725
726 function T = getAvgTputHandles(self)
727 % T = GETAVGTPUTHANDLES()
728 T = self.delegate('getAvgTputHandles', 1);
729 end
730
731 function A = getAvgArvRHandles(self)
732 % A = GETAVGARVRHANDLES()
733 A = self.delegate('getAvgArvRHandles', 1);
734 end
735
736 function W = getAvgResidTHandles(self)
737 % W = GETAVGRESIDTHANDLES()
738 W = self.delegate('getAvgResidTHandles', 1);
739 end
740
741 % Kotlin-style aliases for table methods
742 function avg_table = avgTable(self)
743 % AVGTABLE Kotlin-style alias for getAvgTable
744 avg_table = self.getAvgTable();
745 end
746
747 function avg_sys_table = avgSysTable(self)
748 % AVGSYSTABLE Kotlin-style alias for getAvgSysTable
749 avg_sys_table = self.getAvgSysTable();
750 end
751
752 function avg_node_table = avgNodeTable(self)
753 % AVGNODETABLE Kotlin-style alias for getAvgNodeTable
754 avg_node_table = self.getAvgNodeTable();
755 end
756
757 function avg_chain_table = avgChainTable(self)
758 % AVGCHAINTABLE Kotlin-style alias for getAvgChainTable
759 avg_chain_table = self.getAvgChainTable();
760 end
761
762 function avg_node_chain_table = avgNodeChainTable(self)
763 % AVGNODECHAINTABLE Kotlin-style alias for getAvgNodeChainTable
764 avg_node_chain_table = self.getAvgNodeChainTable();
765 end
766
767 % Table -> T short aliases
768 function avg_table = avgT(self)
769 % AVGT Short alias for avgTable
770 avg_table = self.avgTable();
771 end
772
773 function avg_sys_table = avgSysT(self)
774 % AVGSYST Short alias for avgSysTable
775 avg_sys_table = self.avgSysTable();
776 end
777
778 function avg_node_table = avgNodeT(self)
779 % AVGNODET Short alias for avgNodeTable
780 avg_node_table = self.avgNodeTable();
781 end
782
783 function avg_chain_table = avgChainT(self)
784 % AVGCHAINT Short alias for avgChainTable
785 avg_chain_table = self.avgChainTable();
786 end
787
788 function avg_node_chain_table = avgNodeChainT(self)
789 % AVGNODECHAINT Short alias for avgNodeChainTable
790 avg_node_chain_table = self.avgNodeChainTable();
791 end
792
793 % Kotlin-style aliases for composite methods
794 function varargout = avgChain(self, varargin)
795 % AVGCHAIN Kotlin-style alias for getAvgChain
796 [varargout{1:nargout}] = self.getAvgChain(varargin{:});
797 end
798
799 function varargout = avgSys(self, varargin)
800 % AVGSYS Kotlin-style alias for getAvgSys
801 [varargout{1:nargout}] = self.getAvgSys(varargin{:});
802 end
803
804 function varargout = avgNode(self, varargin)
805 % AVGNODE Kotlin-style alias for getAvgNode
806 [varargout{1:nargout}] = self.getAvgNode(varargin{:});
807 end
808
809 function varargout = avg(self, varargin)
810 % AVG Kotlin-style alias for getAvg
811 [varargout{1:nargout}] = self.getAvg(varargin{:});
812 end
813
814 function sys_resp_time = avgSysRespT(self, varargin)
815 % AVGSYSRESPT Kotlin-style alias for getAvgSysRespT
816 sys_resp_time = self.getAvgSysRespT(varargin{:});
817 end
818
819 function sys_tput = avgSysTput(self, varargin)
820 % AVGSYSTPUT Kotlin-style alias for getAvgSysTput
821 sys_tput = self.getAvgSysTput(varargin{:});
822 end
823
824 % Kotlin-style aliases for chain methods
825 function arvr_chain = avgArvRChain(self, varargin)
826 % AVGARVCHAIN Kotlin-style alias for getAvgArvRChain
827 arvr_chain = self.getAvgArvRChain(varargin{:});
828 end
829
830 function qlen_chain = avgQLenChain(self, varargin)
831 % AVGQLENCHAIN Kotlin-style alias for getAvgQLenChain
832 qlen_chain = self.getAvgQLenChain(varargin{:});
833 end
834
835 function util_chain = avgUtilChain(self, varargin)
836 % AVGUTILCHAIN Kotlin-style alias for getAvgUtilChain
837 util_chain = self.getAvgUtilChain(varargin{:});
838 end
839
840 function resp_t_chain = avgRespTChain(self, varargin)
841 % AVGRESPTCHAIN Kotlin-style alias for getAvgRespTChain
842 resp_t_chain = self.getAvgRespTChain(varargin{:});
843 end
844
845 function resid_t_chain = avgResidTChain(self, varargin)
846 % AVGRESIDTCHAIN Kotlin-style alias for getAvgResidTChain
847 resid_t_chain = self.getAvgResidTChain(varargin{:});
848 end
849
850 function tput_chain = avgTputChain(self, varargin)
851 % AVGTPUTCHAIN Kotlin-style alias for getAvgTputChain
852 tput_chain = self.getAvgTputChain(varargin{:});
853 end
854
855 % Kotlin-style aliases for node chain methods
856 function node_arvr_chain = avgNodeArvRChain(self, varargin)
857 % AVGNODERVRCHAIN Kotlin-style alias for getAvgNodeArvRChain
858 node_arvr_chain = self.getAvgNodeArvRChain(varargin{:});
859 end
860
861 function node_qlen_chain = avgNodeQLenChain(self, varargin)
862 % AVGNODEQLENCHAIN Kotlin-style alias for getAvgNodeQLenChain
863 node_qlen_chain = self.getAvgNodeQLenChain(varargin{:});
864 end
865
866 function node_util_chain = avgNodeUtilChain(self, varargin)
867 % AVGNODEUTILCHAIN Kotlin-style alias for getAvgNodeUtilChain
868 node_util_chain = self.getAvgNodeUtilChain(varargin{:});
869 end
870
871 function node_resp_t_chain = avgNodeRespTChain(self, varargin)
872 % AVGNODERESPTCHAIN Kotlin-style alias for getAvgNodeRespTChain
873 node_resp_t_chain = self.getAvgNodeRespTChain(varargin{:});
874 end
875
876 function node_resid_t_chain = avgNodeResidTChain(self, varargin)
877 % AVGNODERESIDTCHAIN Kotlin-style alias for getAvgNodeResidTChain
878 node_resid_t_chain = self.getAvgNodeResidTChain(varargin{:});
879 end
880
881 function node_tput_chain = avgNodeTputChain(self, varargin)
882 % AVGNODETPUTCHAIN Kotlin-style alias for getAvgNodeTputChain
883 node_tput_chain = self.getAvgNodeTputChain(varargin{:});
884 end
885
886 % Kotlin-style aliases for transient methods
887 function varargout = tranAvg(self, varargin)
888 % TRANAVG Kotlin-style alias for getTranAvg
889 [varargout{1:nargout}] = self.getTranAvg(varargin{:});
890 end
891
892 function rd = tranCdfRespT(self, varargin)
893 % TRANCDFRESPT Kotlin-style alias for getTranCdfRespT
894 rd = self.getTranCdfRespT(varargin{:});
895 end
896
897 function rd = tranCdfPassT(self, varargin)
898 % TRANCDFPASST Kotlin-style alias for getTranCdfPassT
899 rd = self.getTranCdfPassT(varargin{:});
900 end
901
902 function varargout = tranProb(self, varargin)
903 % TRANPROB Kotlin-style alias for getTranProb
904 [varargout{1:nargout}] = self.getTranProb(varargin{:});
905 end
906
907 function varargout = tranProbAggr(self, varargin)
908 % TRANPROBAGGR Kotlin-style alias for getTranProbAggr
909 [varargout{1:nargout}] = self.getTranProbAggr(varargin{:});
910 end
911
912 function varargout = tranProbSys(self)
913 % TRANPROBSYS Kotlin-style alias for getTranProbSys
914 [varargout{1:nargout}] = self.getTranProbSys();
915 end
916
917 function varargout = tranProbSysAggr(self)
918 % TRANPROBSYSAGGR Kotlin-style alias for getTranProbSysAggr
919 [varargout{1:nargout}] = self.getTranProbSysAggr();
920 end
921
922 % Kotlin-style aliases for CDF methods
923 function rd = cdfRespT(self, varargin)
924 % CDFRESPT Kotlin-style alias for getCdfRespT
925 rd = self.getCdfRespT(varargin{:});
926 end
927
928 function rd = cdfPassT(self, varargin)
929 % CDFPASST Kotlin-style alias for getCdfPassT
930 rd = self.getCdfPassT(varargin{:});
931 end
932
933 function varargout = perctRespT(self, varargin)
934 % PERCTRESPT Kotlin-style alias for getPerctRespT
935 [varargout{1:nargout}] = self.getPerctRespT(varargin{:});
936 end
937
938 % Kotlin-style aliases for probability methods
939 function pstate = prob(self, varargin)
940 % PROB Kotlin-style alias for getProb
941 pstate = self.getProb(varargin{:});
942 end
943
944 function psysstate = probSys(self)
945 % PROBSYS Kotlin-style alias for getProbSys
946 psysstate = self.getProbSys();
947 end
948
949 function pnir = probAggr(self, varargin)
950 % PROBAGGR Kotlin-style alias for getProbAggr
951 pnir = self.getProbAggr(varargin{:});
952 end
953
954 function pnjoint = probSysAggr(self)
955 % PROBSYSAGGR Kotlin-style alias for getProbSysAggr
956 pnjoint = self.getProbSysAggr();
957 end
958
959 function pmarg = probMarg(self, varargin)
960 % PROBMARG Kotlin-style alias for getProbMarg
961 pmarg = self.getProbMarg(varargin{:});
962 end
963
964 function lnormconst = probNormConstAggr(self)
965 % PROBNORMCONSTAGGR Kotlin-style alias for getProbNormConstAggr
966 lnormconst = self.getProbNormConstAggr();
967 end
968
969 % Kotlin-style aliases for handle methods
970 function varargout = avgHandles(self)
971 % AVGHANDLES Kotlin-style alias for getAvgHandles
972 [varargout{1:nargout}] = self.getAvgHandles();
973 end
974
975 function varargout = tranHandles(self)
976 % TRANHANDLES Kotlin-style alias for getTranHandles
977 [varargout{1:nargout}] = self.getTranHandles();
978 end
979
980 function q = avgQLenHandles(self)
981 % AVGQLENHANDLES Kotlin-style alias for getAvgQLenHandles
982 q = self.getAvgQLenHandles();
983 end
984
985 function u = avgUtilHandles(self)
986 % AVGUTILHANDLES Kotlin-style alias for getAvgUtilHandles
987 u = self.getAvgUtilHandles();
988 end
989
990 function r = avgRespTHandles(self)
991 % AVGRESPTHANDLES Kotlin-style alias for getAvgRespTHandles
992 r = self.getAvgRespTHandles();
993 end
994
995 function t = avgTputHandles(self)
996 % AVGTPUTHANDLES Kotlin-style alias for getAvgTputHandles
997 t = self.getAvgTputHandles();
998 end
999
1000 function a = avgArvRHandles(self)
1001 % AVGARVRHANDLES Kotlin-style alias for getAvgArvRHandles
1002 a = self.getAvgArvRHandles();
1003 end
1004
1005 function w = avgResidTHandles(self)
1006 % AVGRESIDTHANDLES Kotlin-style alias for getAvgResidTHandles
1007 w = self.getAvgResidTHandles();
1008 end
1009
1010 % Kotlin-style aliases for basic metric methods
1011 function qn = avgQLen(self)
1012 % AVGQLEN Kotlin-style alias for getAvgQLen
1013 qn = self.getAvgQLen();
1014 end
1015
1016 function un = avgUtil(self)
1017 % AVGUTIL Kotlin-style alias for getAvgUtil
1018 un = self.getAvgUtil();
1019 end
1020
1021 function rn = avgRespT(self)
1022 % AVGRESPT Kotlin-style alias for getAvgRespT
1023 rn = self.getAvgRespT();
1024 end
1025
1026 function wn = avgResidT(self)
1027 % AVGRESIDT Kotlin-style alias for getAvgResidT
1028 wn = self.getAvgResidT();
1029 end
1030
1031 function wt = avgWaitT(self)
1032 % AVGWAITT Kotlin-style alias for getAvgWaitT
1033 wt = self.getAvgWaitT();
1034 end
1035
1036 function tn = avgTput(self)
1037 % AVGTPUT Kotlin-style alias for getAvgTput
1038 tn = self.getAvgTput();
1039 end
1040
1041 function an = avgArvR(self)
1042 % AVGARVR Kotlin-style alias for getAvgArvR
1043 an = self.getAvgArvR();
1044 end
1045
1046 % Kotlin-style aliases for table methods with parameters
1047 function varargout = avgQLenTable(self, varargin)
1048 % AVGQLENTABLE Kotlin-style alias for getAvgQLenTable
1049 [varargout{1:nargout}] = self.getAvgQLenTable(varargin{:});
1050 end
1051
1052 function varargout = avgUtilTable(self, varargin)
1053 % AVGUTILTABLE Kotlin-style alias for getAvgUtilTable
1054 [varargout{1:nargout}] = self.getAvgUtilTable(varargin{:});
1055 end
1056
1057 function varargout = avgRespTTable(self, varargin)
1058 % AVGRESPTTABLE Kotlin-style alias for getAvgRespTTable
1059 [varargout{1:nargout}] = self.getAvgRespTTable(varargin{:});
1060 end
1061
1062 function varargout = avgTputTable(self, varargin)
1063 % AVGTPUTTABLE Kotlin-style alias for getAvgTputTable
1064 [varargout{1:nargout}] = self.getAvgTputTable(varargin{:});
1065 end
1066
1067 %% LayeredNetwork / EnsembleSolver methods
1068 % These methods are available when solving LayeredNetwork models
1069
1070 function [QN, UN, RN, TN, AN, WN] = getEnsembleAvg(self)
1071 % [QN, UN, RN, TN, AN, WN] = GETENSEMBLEAVG()
1072 % Get average performance metrics for LayeredNetwork ensemble models
1073 [QN, UN, RN, TN, AN, WN] = self.delegate('getEnsembleAvg', 6);
1074 end
1075
1076 function solver = getSolver(self, e)
1077 % SOLVER = GETSOLVER(E)
1078 % Get solver for ensemble model e (LayeredNetwork only)
1079 solver = self.delegate('getSolver', 1, e);
1080 end
1081
1082 function solver = setSolver(self, solver, e)
1083 % SOLVER = SETSOLVER(SOLVER, E)
1084 % Set solver for ensemble model e (LayeredNetwork only)
1085 if nargin < 3
1086 solver = self.delegate('setSolver', 1, solver);
1087 else
1088 solver = self.delegate('setSolver', 1, solver, e);
1089 end
1090 end
1091
1092 function E = getNumberOfModels(self)
1093 % E = GETNUMBEROFMODELS()
1094 % Get number of ensemble models (LayeredNetwork only)
1095 E = self.delegate('getNumberOfModels', 1);
1096 end
1097
1098 function it = getIteration(self)
1099 % IT = GETITERATION()
1100 % Get current iteration number (LayeredNetwork only)
1101 it = self.delegate('getIteration', 1);
1102 end
1103
1104 function AvgTables = getEnsembleAvgTables(self)
1105 % AVGTABLES = GETENSEMBLEAVGTABLES()
1106 % Get average tables for all ensemble models (LayeredNetwork only)
1107 AvgTables = self.delegate('getEnsembleAvgTables', 1);
1108 end
1109
1110 function state = get_state(self)
1111 % STATE = GET_STATE()
1112 % Export current solver state for continuation (SolverLN only)
1113 state = self.delegate('get_state', 1);
1114 end
1115
1116 function set_state(self, state)
1117 % SET_STATE(STATE)
1118 % Import solution state for continuation (SolverLN only)
1119 self.delegate('set_state', 0, state);
1120 end
1121
1122 function update_solver(self, solverFactory)
1123 % UPDATE_SOLVER(SOLVERFACTORY)
1124 % Change the solver for all layers (SolverLN only)
1125 self.delegate('update_solver', 0, solverFactory);
1126 end
1127
1128 % Kotlin-style aliases for LayeredNetwork/EnsembleSolver methods
1129 function varargout = ensembleAvg(self)
1130 % ENSEMBLEAVG Kotlin-style alias for getEnsembleAvg
1131 [varargout{1:nargout}] = self.getEnsembleAvg();
1132 end
1133
1134 function solver = solver(self, e)
1135 % SOLVER Kotlin-style alias for getSolver
1136 solver = self.getSolver(e);
1137 end
1138
1139 function it = iteration(self)
1140 % ITERATION Kotlin-style alias for getIteration
1141 it = self.getIteration();
1142 end
1143
1144 function e = numberOfModels(self)
1145 % NUMBEROFMODELS Kotlin-style alias for getNumberOfModels
1146 e = self.getNumberOfModels();
1147 end
1148
1149 function avg_tables = ensembleAvgTables(self)
1150 % ENSEMBLEAVGTABLES Kotlin-style alias for getEnsembleAvgTables
1151 avg_tables = self.getEnsembleAvgTables();
1152 end
1153
1154 function avg_tables = getEnsembleAvgTs(self)
1155 % GETENSEMBLEAVGTS Short alias for getEnsembleAvgTables
1156 avg_tables = self.getEnsembleAvgTables();
1157 end
1158
1159 function avg_tables = ensembleAvgTs(self)
1160 % ENSEMBLEAVGTS Short alias for ensembleAvgTables
1161 avg_tables = self.ensembleAvgTables();
1162 end
1163
1164 end
1165end