1% [pi0, R] = QBDSolve (B, L, F, L0, prec)
3% Returns the parameters of the matrix-geometrically
4% distributed stationary distribution of a QBD.
6% Using vector pi0 and matrix R provided by
this function
7% the stationary solution can be obtained by
14% B : matrix, shape (N,N)
15% The matrix corresponding to backward transitions
16% L : matrix, shape (N,N)
17% The matrix corresponding to local transitions
18% F : matrix, shape (N,N)
19% The matrix corresponding to forward transitions
20% L0 : matrix, shape (N,N)
21% The matrix corresponding to local transitions at
23% precision : double, optional
24% The fundamental matrix R
is computed up to
this
25% precision. The
default value
is 1e-14
29% pi0 : matrix, shape (1,N)
30% The stationary probability vector of level zero
31% R : matrix, shape (N,N)
32% The matrix parameter of the matrix geometrical
33% distribution of the QBD
35function [pi0, R] = QBDSolve (B, L, F, L0, prec)
37 if ~exist(
'prec',
'var')
44 R = QBDFundamentalMatrices (B, L, F, 'R', prec);
46 % Convert to discrete time problem, if needed
47 if sum(diag(L0)) < 0 % continues time
48 lamb = max(-diag(L0));
53 pi0 = DTMCSolve(L0+R*B);
54 nr = sum(pi0*inv(I-R));