1% [alpha, A] = MGFromMoments(moms)
3% Creates a matrix-geometric distribution that has the
4% same moments as given.
8% moms : vector of doubles
9% The list of moments. The order of the resulting
10% matrix-geometric distribution
is
11% determined based on the number of moments given. To
12% obtain a matrix-geometric distribution of order M,
13% 2*M-1 moments are required.
17% alpha : vector, shape (1,M)
18% The initial vector of the matrix-geometric
20% A : matrix, shape (M,M)
21% The matrix parameter of the matrix-geometric
26% .. [1] A. van de Liefvoort. The moment problem
for
27% continuous distributions. Technical report,
28% University of Missouri, WP-CM-1990-02, Kansas City,
31function [alpha,A] = MGFromMoments(moms)
33 rfmoms = ReducedMomsFromMoms (FactorialMomsFromMoms(moms));
36 vlist = zeros(1,length(moms));
37 tmpVec=zeros(1,length(moms)+1);
42 tmpVec(i+1)=(-1)^i*rfmoms(i+1);
44 vlist(i)=k*sum(tmpVec);
47 [alpha,C]=MEFromMoments(vlist);
49 A=iC*inv(iC+eye(length(iC)));