1function [eta,uT]=MG1_Decay(A)
2%MG1_Decay Computes the Decay Rate of the MG1 type MC [Falkenberg]
4% eta=MG1_Decay(A) computes the decay rate of a recurrent M/G/1
5% type Markov chain, it
is the unique solution of
6% PF(A0 + A1 z + A2 z^2 + ... + Amax z^max) = z on (1,RA), where
7% PF denotes the Peron-Frobenius eigenvalue.
9% [eta,uT]=MG1_Decay(A) computes the decay rate of a recurrent M/G/1
10% type Markov chain and the left eigenvector corresponding to the
11% Peron-Frobenius eigenvalue of A(eta).
18while (new_eta - eta < 0)
20 temp=A(:,dega*m+1:end);
22 temp=temp*eta+A(:,i*m+1:(i+1)*m);
24 new_eta=max(eig(temp));
30while (eta_max - eta_min > 10^(-15))
31 temp=A(:,dega*m+1:end);
33 temp=temp*eta+A(:,i*m+1:(i+1)*m);
35 new_eta=max(eig(temp));
41 eta=(eta_min+eta_max)/2;
46 uT=V(:,find(sum(D,1)==max(sum(D,1))))';