1% jfm = JFactorialMomsFromJMoms(jm)
3% Returns the lag-1 joint factorial moments given the
4% lag-1 joint raw moments.
6% The lag-1 joint raw moments are:
7% `m_{i,j}=E(\mathcal{X}^i\mathcal{Y}^j)`
9% The factorial moments are:
10% `f_{ij}=E(\mathcal{X}(\mathcal{X}-1)\cdots(\mathcal{X}-i+1)\mathcal{Y}(\mathcal{Y}-1)\cdots(\mathcal{Y}-j+1))`
14% jm : matrix, shape (M,M)
15% The matrix of joint raw moments. The entry in row i
16% and column j
is `m_{i,j},i\geq 1,j\geq 1`.
20% jfm : matrix, shape (M,M)
21% The matrix of joint factorial moments. The entry in
22% row i and column j
is `f_{i,j},i\geq 1,j\geq 1`.
28function jfmoms=JFactorialMomsFromJMoms(jmoms)
37 xCoeff=xCoeff(end-1:-1:1);
39 yCoeff=yCoeff(end-1:-1:1);
41 jfmoms(i,j)=trace(jmoms(1:i,1:j)*eh');