1function R = GIM1_R_ETAQA(An)
2%GIM1_R determines R matrix of a GI/M/1-Type Markov Chain
5% R = GIM1_R(An) computes the minimal nonnegative solution to the
6% matrix equation R = A0 + R A1 + R^2 A2 + R^3 A3 + ... + R^max A_max,
7% where A = [A0 A1 A2 A3 ... A_max] has m rows and m*max columns and
is
8% a nonnegative matrix, with (A0 + A1 + A2 + ... + A_max) irreducible
30 error(
'This is not stochastic matrix, neither continuous nor discrete! \n Please make sure every row sum up to 0 or 1');
34 An(s+1:2*s,:) = An(s+1:2*s,:) + eye(s);
39 temp = An((i-1)*s+1:i*s,:);
44R = GIM1_R(Bn,
'A',
'FI');