
LINE: Queueing Analysis Algorithms

User manual for Python

Disclaimer: LINE for Python is in alpha version, some features are still
under development and therefore marked in the manual as TODO.

Last revision: July 12, 2024

Contents

1 Introduction 5
1.1 What is LINE? . 5
1.2 Obtaining the latest release . 6
1.3 References . 6
1.4 Contact and credits . 8
1.5 Copyright and license . 8
1.6 Acknowledgement . 8

2 Getting started 9
2.1 Installation and support . 9

2.1.1 Software requirements . 10
2.1.2 Documentation . 11
2.1.3 Getting help . 11

2.2 Getting started examples . 11
2.2.1 Controlling verbosity . 12
2.2.2 Model gallery . 12
2.2.3 Example 1: A M/M/1 queue . 12
2.2.4 Example 2: A multiclass M/G/1 queue . 14
2.2.5 Example 3: Machine interference problem . 16
2.2.6 Example 4: Round-robin load-balancing . 18
2.2.7 Example 5: Modelling a re-entrant line . 19
2.2.8 Example 6: A queueing network with caching . 22
2.2.9 Example 7: Response time distribution and percentiles 24
2.2.10 Example 8: Optimizing a performance metric . 25
2.2.11 Example 9: Studying a departure process . 26
2.2.12 Example 10: Evaluating a CTMC symbolically . 27

3 Network models 29
3.1 Network object definition . 30

2

CONTENTS 3

3.1.1 Creating a network and its nodes . 30
3.1.2 Advanced node parameters . 34
3.1.3 Job classes . 34
3.1.4 Routing strategies . 37
3.1.5 Class switching . 40
3.1.6 Service and inter-arrival time processes . 42

3.2 Internals . 45
3.2.1 Representation of the model structure . 45

3.3 Debugging and visualization . 47
3.4 Model import and export . 48

3.4.1 Creating a LINE model using JMT . 49
3.4.2 Supported JMT features . 50

4 Analysis methods 52
4.1 Performance metrics . 52
4.2 Steady-state analysis . 52

4.2.1 Station average performance . 52
4.2.2 Station response time distribution . 54
4.2.3 System average performance . 54

4.3 Specifying states . 54
4.3.1 Station states . 55
4.3.2 Network states . 57
4.3.3 Initialization of transient classes . 58
4.3.4 State space generation . 58

4.4 Transient analysis . 58
4.4.1 Computing transient averages . 58
4.4.2 First passage times into stations . 59

4.5 Sample path analysis . 59
4.6 Sensitivity analysis and numerical optimization . 60

4.6.1 Fast parameter update . 60
4.6.2 Refreshing a network topology with non-probabilistic routing 61
4.6.3 Saving a network object before a change . 61

5 Network solvers 62
5.1 Overview . 62
5.2 Solution methods . 63

5.2.1 LINE . 66
5.2.2 CTMC . 66
5.2.3 FLUID . 67
5.2.4 JMT . 67

4 CONTENTS

5.2.5 MAM . 68
5.2.6 MVA . 68
5.2.7 NC . 69
5.2.8 SSA . 70

5.3 Supported language features and options . 70
5.3.1 Solver features . 70
5.3.2 Class functions . 70
5.3.3 Node types . 73
5.3.4 Scheduling strategies . 73
5.3.5 Statistical distributions . 74
5.3.6 Solver options . 75

5.4 Solver maintenance . 77

6 Layered network models 78
6.1 Basics about layered networks . 78
6.2 LayeredNetwork object definition . 79

6.2.1 Creating a layered network topology . 79
6.2.2 Describing host demands of entries . 80
6.2.3 Debugging and visualization . 81

6.3 Internals . 82
6.3.1 Representation of the model structure . 82
6.3.2 Decomposition into layers . 83

6.4 Solvers . 83
6.4.1 LQNS . 85
6.4.2 QNS . 85
6.4.3 LN . 86

6.5 Model import and export . 86

7 Random environments 87
7.1 Environment object definition . 87

7.1.1 Specifying the environment . 87
7.1.2 Specifying a reset policy . 88
7.1.3 Specifying system models for each stage . 89

7.2 Solvers . 89
7.2.1 ENV . 89

A Examples 94

Chapter 1

Introduction

1.1 What is LINE?

LINE is an open-source software package to analyze queueing models via analytical methods and simulation.
The tool aims at simplifying the computation of performance and reliability metrics in models of systems
such as software applications, business processes, or computer networks. LINE decomposes a high-level sys-
tem model into one or more stochastic models, typically extended queueing networks, that are subsequently
analyzed using either numerical algorithms or simulation. The development of the stand-alone Python ver-
sion covered in this manual is presently in alpha version (https://github.com/imperial-qore/line-solver/tree/main/
python) and is mainly a wrapper for the Java version (https://github.com/imperial-qore/line-solver/tree/main/java).
Other tool versions can be found at https://github.com/imperial-qore/line-solver.

A key feature of LINE is that the solver decouples the model description from the solvers used for
its solution. That is, LINE implements model-to-model transformations that automatically translate the
model specification into the input format (or data structure) accepted by the target solver. External solvers
supported by LINE include Java Modelling Tools (JMT; http://jmt.sf.net) and LQNS (http://www.sce.carleton.ca/
rads/lqns/). Native model solvers are instead based on formalisms and techniques such as:

• Continuous-time Markov chains (CTMC)

• Fluid ordinary differential equations (FLUID)

• Matrix analytic methods (MAM)

• Normalizing constant analysis (NC)

• Mean-value analysis (MVA)

• Stochastic simulation (SSA)

5

https://github.com/imperial-qore/line-solver/tree/main/python
https://github.com/imperial-qore/line-solver/tree/main/python
https://github.com/imperial-qore/line-solver/tree/main/java
https://github.com/imperial-qore/line-solver
http://jmt.sf.net
http://www.sce.carleton.ca/rads/lqns/
http://www.sce.carleton.ca/rads/lqns/

6 CHAPTER 1. INTRODUCTION

Each solver encodes a general solution paradigm and can implement both exact and approximate analysis
methods. For example, the MVA solver implements both exact mean value analysis (MVA) and approximate
mean value analysis (AMVA). The offered methods typically differ for accuracy, computational cost, and
the subset of model features they support. A special solver (AUTO) is supplied that provides an automated
recommendation on which solver to use for a given model.

The above techniques can be applied to models specified in the following formats:

• LINE modeling language. This is a domain-specific object-oriented language designed to resemble
the abstractions available in JMT’s queueing network simulator (JSIM).

• Layered queueing network models (LQNS XML format). LINE is able to solve a sub-class of layered
queueing network models, either specified using the LINE modeling language or according to the
XML metamodel of the LQNS solver.

• JMT simulation models (JSIMg, JSIMw formats). LINE is able to import and solve queueing network
models specified using JSIMgraph and JSIMwiz. LINE models can be exported to, and visualized
with, JSIMgraph and JSIMwiz.

• Performance Model Interchange Format (PMIF XML format). LINE is able to import and solve closed
queueing network models specified using PMIF v1.0.

1.2 Obtaining the latest release

This document contains the user manual for LINE version 2.0.x, which can be obtained from:

http://line-solver.sourceforge.net/

LINE 2.0.x has been tested using Python version 3.10, and IntelliJ DataSpell 2024.1.1 for the Jupyter note-
books.

1.3 References

To cite the LINE solver, we recommend to reference:

• G. Casale. “Integrated Performance Evaluation of Extended Queueing Network Models with LINE”,
in Proc. of WSC 2020, ACM Press, Dec 2020. This paper presents the technical approach used to
develop Line 2.0.x.

The following papers discuss LINE or use it in applications:

• R.-A. Dobre, Z. Niu, G. Casale. Approximating Fork-Join Systems via Mixed Model Transforma-
tions. Proc. of WOSP-C, 2024. This paper presents the fork-join approximation technique imple-
mented in SolverMVA.

http://line-solver.sourceforge.net/

1.3. REFERENCES 7

• G. Casale, Y. Gao, Z. Niu, L. Zhu. LN: a Meta-Solver for Layered Queueing Network Analysis,
Proceedings of QEST, 22 pages, Sep 2022. This paper gives a short introduction to the Layered
Queueing Network solver available in Line 2.0.x. Later extended into ACM Transactions on Modeling
and Computer Simulation, 2024.

• Y. Gao, G. Casale. JCSP: Joint Caching and Service Placement for Edge Computing Systems, in
Proc. of IEEE/ACM IWQoS, 10 pages, June 2022. This work introduces caching layers in Layered
Queueing Networks within Line’s LN solver.

• J. Ruuskanen, T. Berner, K.-E. Årzén et al., Improving the mean-field fluid model of processor shar-
ing queueing networks for dynamic performance models in cloud computing, Performance Evaluation
(2021). This work applies Line-JMT model-to-model transformations to validate mean-field approxi-
mations for product-form queueing networks..

• Z. Niu, G. Casale. A Mixture Density Network Approach to Predicting Response Times in Layered
Systems, in Proceedings of IEEE MASCOTS, 8 pages, Nov 2021. This work applies mixture density
networks for end-to-end latency percentile estimations in Layered Queueing Networks using Line.

• Y. Chen, G. Casale. Deep Learning Models for Automated Identification of Scheduling Policies, in
Proceedings of IEEE MASCOTS, 8 pages, Nov 2021. This work uses LINE’s SSA solver to generate
scheduling traces for training neural networks to infer scheduling policies.

• G. Russo Russo, V. Cardellini, G. Casale, F. Lo Presti. MEAD: Model-Based Vertical Auto-Scaling
for Data Stream Processing, in Proc. of IEEE/ACM CCGRID, 10 pages, May 2021. This work uses
Line’s MAM solver for burstiness-aware auto-scaling in data streaming systems.

• G. Casale. “Automated Multi-paradigm Analysis of Extended and Layered Queueing Models with
LINE”, in Proc. of ACM/SPEC 2019, ACM Press, Apr 2019. This paper gives a short introduction to
Line 2.0.0.

• J. F. Pérez and G. Casale. “LINE: Evaluating Software Applications in Unreliable Environments”,
in IEEE Transactions on Reliability, Volume 66, Issue 3, pages 837-853, Feb 2017. This paper
introduces the core algorithms behind Line 1.0.0.

• C. Li and G. Casale. “Performance-Aware Refactoring of Cloud-based Big Data Applications”, in
Proceedings of 10th IEEE/ACM International Conference on Utility and Cloud Computing, 2017.
This paper uses Line to model stream processing systems.

• D. J. Dubois, G. Casale. “OptiSpot: minimizing application deployment cost using spot cloud re-
sources”, in Cluster Computing, Volume 19, Issue 2, pages 893-909, 2016. This paper uses Line to
determine bidding costs in spot VMs.

8 CHAPTER 1. INTRODUCTION

• R. Osman, J. F. Pérez, and G. Casale. “Quantifying the Impact of Replication on the Quality-of-
Service in Cloud Databases’. Proceedings of the IEEE International Conference on Software Quality,
Reliability and Security (QRS), 286-297, 2016. This paper uses Line to model the Amazon RDS
database.

• C. Müller, P. Rygielski, S. Spinner, and S. Kounev. Enabling Fluid Analysis for Queueing Petri Nets
via Model Transformation, Electr. Notes Theor. Comput. Sci, 327, 71–91, 2016. This paper uses
Line to analyze Descartes models used in software engineering.

• J. F. Pérez and G. Casale. “Assessing SLA compliance from Palladio component models,” in Proceed-
ings of the 2nd Workshop on Management of resources and services in Cloud and Sky computing
(MICAS), IEEE Press, 2013. This paper uses Line to analyze Palladio component models used in
model-driven software engineering.

1.4 Contact and credits

Project coordinator: Giuliano Casale, Department of Computing, Imperial College London, 180 Queen’s
Gate, SW7 2AZ, London, United Kingdom. Web: http://wp.doc.ic.ac.uk/gcasale/

Please refer to the following file for detailed credits:

1.5 Copyright and license

Copyright Imperial College London (2012-Present). LINE is freeware and open-source, released under the
3-clause BSD license. Additional licensing information is available in the file:

https://github.com/imperial-qore/line-solver/blob/main/LICENSE

1.6 Acknowledgement

LINE has been partially funded by the European Commission grants FP7-318484 (MODAClouds), H2020-
644869 (DICE), H2020-825040 (RADON), and by the EPSRC grant EP/M009211/1 (OptiMAM).

http://wp.doc.ic.ac.uk/gcasale/
https://github.com/imperial-qore/line-solver/blob/main/LICENSE

Chapter 2

Getting started

2.1 Installation and support

This is the fastest way to get started with LINE:

1. Obtain the latest release:

• Stable release (zip file): https://sourceforge.net/projects/line-solver/files/latest/download

• Development release (git): https://github.com/imperial-qore/line-solver/

Ensure that the files are decompressed (or checked out) in the installation folder.

2. From now on, you will need to run all the commands from the python folder. Install the necessary
Python libraries running

pip install -r requirements.txt

3. LINE is now ready to use. For example, you can run a basic M/M/1 model using

python3 mm1.py

4. Jupyter notebooks are also available under the examples and gettingstarted folders.

To run line within your Python program, import the line solver module at the beginning of the
file, e.g.,

from line_solver import *

9

https://sourceforge.net/projects/line-solver/files/latest/download
https://github.com/imperial-qore/line-solver/

10 CHAPTER 2. GETTING STARTED

2.1.1 Software requirements

Certain features of LINE depend on external tools and libraries. The recommended dependencies are:

• Python version 3.10 or later, with the following packages:

– enum tools

– jpype1

– numpy

– pandas

– matplotlib

– scipy

• Jupyter notebooks have been developed and tested using IntelliJ DataSpell 2024.1.1.

Partial Java ports of these libraries have been implemented or are automatically downloaded or shipped with
LINE:

• Java Modelling Tools (http://jmt.sf.net): version 1.2.4 or later. The latest version is automatically down-
loaded at the first call of the JMT solver.

• KPC-Toolbox (https://github.com/kpctoolboxteam/kpc-toolbox): version 0.3.4 or later. This release is al-
ready included under the lib subfolder.

• M3A (https://github.com/imperial-qore/M3A): version 1.0.0. This release is already included under the
lib subfolder.

• BuTools (https://github.com/ghorvath78/butools): version 2.0 or later. This release is already included
under the lib subfolder.

• Q-MAM (https://win.uantwerpen.be/∼vanhoudt/tools/QBDfiles.zip): This release is already included under
the lib subfolder.

Optional dependencies recommended to utilize all features available in LINE are as follows:

• LQNS (https://github.com/layeredqueuing/V6): version 6.2.28 or later. System paths need to be config-
ured such that the lqns and lqnsim solvers need are available on the command line (i.e., can be
invoked from MATLAB via the dos or unix commands without need to specify the paths of the
executables).

http://jmt.sf.net
https://github.com/kpctoolboxteam/kpc-toolbox
https://github.com/imperial-qore/M3A
https://github.com/ghorvath78/butools
https://win.uantwerpen.be/~vanhoudt/tools/QBDfiles.zip
https://github.com/layeredqueuing/V6

2.2. GETTING STARTED EXAMPLES 11

2.1.2 Documentation

This manual introduces the main concepts to define models in LINE and run its solvers. The document in-
cludes in particular several tables that summarize the features currently supported in the modeling language
and by individual solvers. Additional resources are as follows:

• PDF versions of all manuals (Java, MATLAB, Python): https://github.com/imperial-qore/line-solver/tree/
main/doc

• An online wiki version of the manual (MATLAB version): https://github.com/line-solver/LINE/wiki.

• Java API class hierarchy: https://htmlpreview.github.io/?https://raw.githubusercontent.com/imperial-qore/line-solver/
main/java/docs/javadoc/index.html.

2.1.3 Getting help

For discussions, bug reports, new feature requests, please create a thread on one of the following Sourceforge
boards:

• General discussion: https://sourceforge.net/p/line-solver/discussion/help/

• Bugs and issues: https://sourceforge.net/p/line-solver/tickets/

• Feature requests: https://sourceforge.net/p/line-solver/feature-requests/

2.2 Getting started examples

In this section, we present some examples that illustrate how to use LINE. The relevant scripts are included
under the gettingstarted folder.

Systems can be described in LINE using one of the available classes of stochastic models:

• Network models are extended queueing networks. Typical instances are open, closed and mixed
queueing networks, possibly including advanced features such as class-switching, finite capacity, pri-
orities, non-exponential distributions, and others. Technical background on these models can be found
in books such as [5, 34] or in tutorials such as [1, 33].

• LayeredNetwork models are layered queueing networks, i.e., models consisting of layers, each
corresponding to a Network object, which interact through synchronous and asynchronous calls.
Technical background on layered queueing networks can be found in [50].

The goal of the remainder of this chapter is to provide simple examples that explain the basics on how these
models can be analyzed in LINE. More advanced forms of evaluation, such as probabilistic or transient anal-
yses, are discussed in later chapters. Additional examples are supplied under the examples and gallery
folders.

https://github.com/imperial-qore/line-solver/tree/main/doc
https://github.com/imperial-qore/line-solver/tree/main/doc
https://github.com/line-solver/LINE/wiki
https://htmlpreview.github.io/?https://raw.githubusercontent.com/imperial-qore/line-solver/main/java/docs/javadoc/index.html
https://htmlpreview.github.io/?https://raw.githubusercontent.com/imperial-qore/line-solver/main/java/docs/javadoc/index.html
https://sourceforge.net/p/line-solver/discussion/help/
https://sourceforge.net/p/line-solver/tickets/
https://sourceforge.net/p/line-solver/feature-requests/

12 CHAPTER 2. GETTING STARTED

2.2.1 Controlling verbosity

Solver verbosity may be configured at program start using, e.g.:

GlobalConstants.setVerbose(VerboseLevel.DEBUG)

Alternative verbosity levels are VerboseLevel.STD and VerboseLevel.SILENT.

2.2.2 Model gallery

LINE includes a collection of classic, commonly occurring, queueing models under the gallery folder.
They include single queueing systems (e.g., M/M/1 , M/H2/1, D/M/1, ...), tandem queueing systems,
and basic queueing networks. For example, to instantiate and estimate the mean response time for a tandem
network of M/M/1 queues we may run

SolverMVA(gallery_mm1_tandem(),'method','exact').getAvgTable()

Obtaining the following pandas DataFrame

Station JobClass QLen Util RespT ResidT ArvR Tput
0 mySource myClass 0.0000 0.0 0.0000 0.0000 0.0 1.0
1 Queue1 myClass 8.9992 0.9 8.9992 8.9992 1.0 1.0
2 Queue2 myClass 8.9992 0.9 8.9992 8.9992 1.0 1.0

The examples in the gallery may also be used as templates to accelerate the definition of basic models.
Example 9 shows later an example of gallery instantiation of a M/E2/1 queue.

2.2.3 Example 1: A M/M/1 queue

The M/M/1 queue is a classic model of a queueing system where jobs arrive into an infinite-capacity buffer,
wait to be processed in first-come first-served (FCFS) order, and then leave after service completion. Arrival
and service times are assumed to be independent and exponentially distributed random variables.

In this example, we wish to compute average performance measures for the M/M/1 queue. We assume
that arrivals come in at rate λ = 1 job/s, while service has rate µ = 2 job/s. It is known from theory that the
exact value of the server utilization in this case is ρ = λ/µ = 0.5, i.e., 50%, while the mean response time
for a visit is R = 1/(µ− λ) = 1s. We wish to verify these values using JMT-based simulation, instantiated
through LINE.

The general structure of a LINE script consists of four blocks:

1. Definition of nodes

2. Definition of job classes and associated statistical distributions

3. Instantiation of model topology

2.2. GETTING STARTED EXAMPLES 13

4. Solution

For example, the following script solves the M/M/1 model

model = Network("M/M/1 model")
Block 1: nodes
source = Source(model, "Source")
queue = Queue(model, "Queue", SchedStrategy.FCFS)
sink = Sink(model, "Sink")
Block 2: classes
jobclass = OpenClass(model, "Class1")
source.setArrival(jobclass, Exp(1.0))
queue.setService(jobclass, Exp(2.0))
Block 3: topology
model.addLink(source, queue)
model.addLink(queue, sink)
Block 4: solution
avgTable = SolverJMT(model, 'seed', 23000).getAvgTable() # pandas.DataFrame

In the example, source and sink are arrival and departure points of jobs; queue is a queueing station
with FCFS scheduling; jobclass defines an open class of jobs that arrive, get served, and leave the system;
Exp(2.0) defines an exponential distribution with rate parameter λ = 2.0; finally, the getAvgTable
command solves for average performance measures with JMT’s simulator, using for reproducibility a spe-
cific seed for the random number generator.

The result is a table with mean performance measures including: the number of jobs in the station either
queueing or receiving service (QLen); the utilization of the servers (Util); the mean response time for a
visit to the station (RespT); the mean residence time, i.e. the mean response time cumulatively spent at the
station over all visits (ResidT); the mean throughput of departing jobs (Tput)

Station JobClass QLen Util RespT ResidT Tput
0 Source Class1 0.000000 0.00000 0.000000 0.000000 0.990016
1 Queue Class1 0.950088 0.48791 0.967911 0.967911 0.997006

One can verify that this matches JMT results by first typing

model.jsimgView()

which will open the model inside JSIMgraph, as shown in Figure 2.1. From this screen, the simulation can
be started using the green “play” button in the JSIMgraph toolbar. A pre-defined gallery of classic models
is also available, for example

model = gallery_mm1()

returns a M/M/1 queue with 50% utilization.
If we want to select a particular row of the AvgTable data structure, we can use the tget (table get)

command, for example

14 CHAPTER 2. GETTING STARTED

Figure 2.1: M/M/1 example in JSIMgraph launched from the DataSpell IDE

ARow = tget(AvgTable, 'Queue', 'Class1')

gives output

Station JobClass QLen Util RespT ResidT Tput
1 Queue Class1 0.955501 0.48736 0.954293 0.954293 0.999868

If we specify only ’Queue’ or ’Class1’, tget will return all entries corresponding to that station or
class. Moreover, the following syntax is also valid

ARow = tget(AvgTable, queue, jobclass)

if we specify only queue or only jobclass, tget will return all entries corresponding to that station or
class.

2.2.4 Example 2: A multiclass M/G/1 queue

We now consider a more challenging variant of the first example. We assume that there are two classes of
incoming jobs with non-exponential service times. For the first class, service times are Erlang distributed
with unit rate and variance 1/3; they are instead read from a trace for the second class. Both classes have
exponentially distributed inter-arrival times with mean 2s.

To run this example, let us first change the working directory to the examples folder. Then we specify
the node block

model = Network('M/G/1')
source = Source(model,'Source')
queue = Queue(model, 'Queue', SchedStrategy.FCFS)
sink = Sink(model,'Sink')

2.2. GETTING STARTED EXAMPLES 15

The next step consists in defining the classes. We fit automatically from mean and squared coefficient of
variation (i.e., SCV=variance/mean2) an Erlang distribution and use the Replayer distribution to request
that the specified trace is read cyclically to obtain the service times of class 2

jobclass1 = OpenClass(model, 'Class1')
jobclass2 = OpenClass(model, 'Class2')

source.setArrival(jobclass1, Exp(0.5))
source.setArrival(jobclass2, Exp(0.5))

queue.setService(jobclass1, Erlang.fitMeanAndSCV(1, 1/3))
queue.setService(jobclass2, Replayer('example_trace.txt'))

Note that the example trace.txt file consists of a single column of doubles, each representing a service
time value, e.g.,

1.2377474e-02
4.4486055e-02
1.0027642e-02
2.0983173e-02
...

We now specify a linear route through source, queue, and sink for both classes

P = model.initRoutingMatrix()
P.set(jobclass1,Network.serialRouting(source,queue,sink))
P.set(jobclass2,Network.serialRouting(source,queue,sink))
model.link(P)

and solve the model with JMT

jmtAvgTable = SolverJMT(model,'seed',23000).getAvgTable()

which gives

JMT Model: /tmp/workspace/jsim/7955719514502154869/model.jsim
JMT Analysis completed. Runtime: 1.06 seconds
Station JobClass QLen Util RespT ResidT Tput

0 Source Class1 0.000000 0.000000 0.000000 0.000000 0.501685
1 Source Class2 0.000000 0.000000 0.000000 0.000000 0.506538
2 Queue Class1 0.880661 0.494749 1.737321 1.737321 0.506679
3 Queue Class2 0.438433 0.053432 0.817414 0.817414 0.507503

We wish now to validate this value against an analytical solver. Since jobclass2 has trace-based service
times, we first need to revise its service time distribution to make it analytically tractable, e.g., we may ask
LINE to fit an acyclic phase-type distribution [4] based on the trace

queue.setService(jobclass2, Replayer('example_trace.txt').fitAPH())

16 CHAPTER 2. GETTING STARTED

We can now use a Continuous Time Markov Chain (CTMC) to solve the system, but since the state space
is infinite in open models, we need to truncate it to be able to use this solver. For example, we may restrict
to states with at most 2 jobs in each class, checking with the verbose option the size of the resulting state
space

TODO: under development

However, we see from the comparison with JMT that the errors of SolverCTMC are rather large. Since
the truncated state space consists of just 46 states, we can further increase the cutoff to 4, trading a slower
solution time for higher precision

TODO: under development

To gain more accuracy, we could either keep increasing the cutoff value or, if we wish to compute an exact
solution, we may call the matrix-analytic method (MAM) solver instead. SolverMAM uses the repetitive
structure of the CTMC to exactly analyze open systems with an infinite state space, calling

SolverMAM(model).getAvgTable()

we get

Station JobClass QLen Util RespT ResidT ArvR Tput
0 Source Class1 0.000000 0.000000 0.000000 0.000000 0.5 0.5
1 Source Class2 0.000000 0.000000 0.000000 0.000000 0.5 0.5
2 Queue Class1 0.876460 0.500000 1.752920 1.752920 0.5 0.5
3 Queue Class2 0.426996 0.050536 0.853991 0.853991 0.5 0.5

The current MAM implementation is primarily constructed on top of Java ports of the BuTools solver [31]
and the SMC solver [3].

2.2.5 Example 3: Machine interference problem

Closed models involve jobs that perpetually cycle within a network of queues. The machine interference
problem is a classic example, in which a group of repairmen is tasked with fixing machines as they break
and the goal is to choose the optimal size of the group. We here illustrate how to evaluate the performance
of a given group size. We consider a scenario with S = 2 repairmen, with machines that break down at a
rate of 0.5 failed machines/week, after which a machine is fixed in an exponential distributed time with rate
4.0 repaired machines/week. There are a total of N = 3 machines.

Suppose that we wish to obtain an exact numerical solution using Continuous Time Markov Chains
(CTMCs). The above model can be analyzed as follows:

model = Network('MRP')
delay = Delay(model, 'WorkingState')
queue = Queue(model, 'RepairQueue', SchedStrategy.FCFS)
queue.setNumberOfServers(2)

2.2. GETTING STARTED EXAMPLES 17

cclass = ClosedClass(model, 'Machines', 3, delay)
delay.setService(cclass, Exp(0.5))
queue.setService(cclass, Exp(4.0))
model.link(Network.serialRouting(delay, queue))

TODO: under development

Here, delay appears in the constructor of the closed class to specify that a job will be considered completed
once it returns to the delay (i.e., the machine returns in working state). We say that the delay is thus the
reference station of cclass. The above code prints the following result

TODO: under development

As before, we can inspect and analyze the model in JSIMgraph using the command

model.jsimgView()

Figure 2.2 illustrates the result, demonstrating the automated definition of the closed class.

Figure 2.2: Machine interference model in JSIMgraph

We can now also inspect the CTMC more in the details as follows

TODO: under development

which produces in output the state space of the model and the infinitesimal generator of the CTMC

TODO: under development

For example, the first state (0 1 2) consists of two components: the initial 0 denotes the number of jobs in
service in the delay, while the remaining part is the state of the FCFS queue. In the latter, the 1 means
that a job of class 1 (the only class in this model) is in the waiting buffer, while the 2 means that there are
two jobs in service at the queue.

18 CHAPTER 2. GETTING STARTED

As another example, the second state (1 0 2) is similar, but one job has completed at the queue and has
then moved to the delay, concurrently triggering an admission in service for the job that was in the queue
buffer. As a result of this, the buffer is now empty. The corresponding transition rate in the infinitesimal
generator matrix is row 1 and column 2 of InfGen, which has value 8.0, that is the sum of the completion
rates at the queue for each server in the first state, and where indexes 1 and 2 are the rows in StateSpace
associated to the source and destination states.

On this and larger infinite generators, we may also list individual non-zero transitions as follows

TODO: under development

The above printout helps in matching the state transitions to their rates.
To avoid having to inspect the StateSpace variable to determine to which station a particular column

refers to, we can alternatively use the more general invocation

TODO: under development

which automatically splits the state space into its constituent parts for each stateful node.
A further observation is that model.getStateSpace() forces the regeneration of the state space

at each invocation, whereas the equivalent function in the CTMC solver, solver.getStateSpace(),
returns the state space cached during the solution of the CTMC.

2.2.6 Example 4: Round-robin load-balancing

In this example we consider a system of two parallel processor-sharing queues and we wish to study the
effect of load-balancing on the average performance of an open class of jobs. We begin as usual with the
node block, where we now include a special node, called the Router, to control the routing of jobs from
the source into the queues:

model = Network('RRLB')
source = Source(model, 'Source')
lb = Router(model, 'LB')
queue1 = Queue(model, 'Queue1', SchedStrategy.PS)
queue2 = Queue(model, 'Queue2', SchedStrategy.PS)
sink = Sink(model, 'Sink')

Let us then define the class block by setting exponentially-distributed inter-arrival times and service times,
e.g.,

jobclass = OpenClass(model, 'Class1')
source.setArrival(jobclass, Exp(1.0))
queue1.setService(jobclass, Exp(2.0))
queue2.setService(jobclass, Exp(2.0))

We now wish to express the fact that the router applies a round-robin strategy to dispatch jobs to the queues.
Since this is now a non-probabilistic routing strategy, we need to adopt a slightly different style to declare

2.2. GETTING STARTED EXAMPLES 19

the routing topology as we cannot specific anymore routing probabilities. First, we indicate the connections
between the nodes, using the addLinks function:

model.addLinks([[source, lb],
[lb, queue1],
[lb, queue2],
[queue1, sink],
[queue2, sink]])

lb.setRouting(jobclass, RoutingStrategy.RAND)

At this point, all nodes are automatically configured to route jobs with equal probabilities on the outgoing
links (RoutingStrategy.RAND policy). If we solve the model at this point, we see that the response
time at the queues is around 0.66s. Running JMT

jmtAvgTable = SolverJMT(model,'seed',23000).getAvgTable()

we get

Station JobClass QLen Util RespT ResidT ArvR Tput
0 Source Class1 0.000000 0.000000 0.000000 0.000000 1.013486 1.013486
1 Queue1 Class1 0.316119 0.246825 0.654111 0.327056 0.500997 0.500997
2 Queue2 Class1 0.334030 0.250757 0.684064 0.342032 0.504135 0.504135

After resetting the internal data structures, which is required before modifying a model we can require
LINE to solve again the model using this time a round-robin policy at the router.

model.reset()
lb.setRouting(oclass, RoutingStrategy.RROBIN)

A representation of the model at this point is shown in Figure 2.3.
Lastly, we run again JMT and find that round-robin produces a visible decrease in response times, which

are now around 0.56s.

SolverJMT(model,'seed',23000).getAvgTable()

gives

Station JobClass QLen Util RespT ResidT ArvR Tput
0 Source Class1 0.000000 0.000000 0.000000 0.000000 1.008868 1.008868
1 Queue1 Class1 0.304291 0.261181 0.584815 0.292408 0.505255 0.505255
2 Queue2 Class1 0.292822 0.243971 0.572931 0.286466 0.505264 0.505264

2.2.7 Example 5: Modelling a re-entrant line

Let us now consider a simple example inspired to the classic problem of modeling re-entrant lines. This
arises in manufacturing systems where parts (i.e., jobs) re-enter multiple times a machine (i.e., a queueing

20 CHAPTER 2. GETTING STARTED

Figure 2.3: Load-balancing model

station), asking at each visit a different class of service. This implies, for example, that the service time at
every visit could feature a different mean or a different distribution compared to the previous visits, thus
modeling a different stage of processing.

To illustrate this, consider for example a degenerate model composed by a single FCFS queue and K
classes. In this model, a job that completes processing in class k is routed back at the tail of the queue in
class k + 1, unless k = K in which case the job re-enters in class 1.

We take the following assumptions: K = 3 and class k has an Erlang-2 service time distribution at the
queue with mean equal to k; the system starts with N1 = 1 jobs in class 1 and zero jobs in all other classes.

model = Network('RL')
queue = Queue(model, 'Queue', SchedStrategy.FCFS)
K = 3
N = (1, 0, 0)
jobclass = []
for k in range(K):

jobclass.append(ClosedClass(model, 'Class' + str(k), N[k], queue))
queue.setService(jobclass[k], Erlang.fitMeanAndOrder(1+k, 2))

P = model.initRoutingMatrix()
P.set(jobclass[0], jobclass[1], queue, queue, 1.0)
P.set(jobclass[1], jobclass[2], queue, queue, 1.0)
P.set(jobclass[2], jobclass[0], queue, queue, 1.0)
model.link(P)

The corresponding JMT model is shown in Figure 2.4, where it can be seen that the class-switching rule is
automatically enforced by introduction of a ClassSwitch node in the network.
We can now simulate the performance indexes for the different classes, for example using LINE’s normal-

2.2. GETTING STARTED EXAMPLES 21

Figure 2.4: Re-entrant lines as an example of class-switching

izing constant solver (SolverNC)

ncAvgTable = SolverNC(model).getAvgTable()

gives

Station JobClass QLen Util RespT ResidT ArvR Tput
0 Queue Class1 0.166667 0.166667 1.0 0.333333 0.166667 0.166667
1 Queue Class2 0.333333 0.333333 2.0 0.666667 0.166667 0.166667
2 Queue Class3 0.500000 0.500000 3.0 1.000000 0.166667 0.166667

Suppose now that the job is considered completed, for the sake of computation of system performance
metrics, only when it departs the queue in class K (here Class3). By default, LINE will return system-
wide performance metrics using the getAvgSysTable method, i.e.,

new SolverNC(model).getAvgSysTable().print();

gives

Chain JobClasses SysRespT SysTput
0 Chain1 (Class1 Class2 Class3) 2.0 0.5

This method identifies the model chains, i.e., groups of classes that can exchange jobs with each other, but
not with classes in other chains. Since the job can switch into any of the three classes, in this model there is
a single chain comprising the three classes.

We see that the throughput of the chain is 0.5, which means that LINE is counting every departure from
the queue in any class as a completion for the whole chain. This is incorrect for our model since we want to
count completions only when jobs depart in Class3. To require this behavior, we can tell to the solver that
passages for classes 1 and 2 through the reference station should not be counted as completions

jobclass[0].completes = False
jobclass[1].completes = False

This modification then gives the correct chain throughput, matching the one of Class3 alone

22 CHAPTER 2. GETTING STARTED

ncAvgSysTable = SolverNC(model).getAvgSysTable()

gives

Chain JobClasses SysRespT SysTput
0 Chain1 (Class1 Class2 Class3) 6.0 0.166667

2.2.8 Example 6: A queueing network with caching

In this more advanced example, we show how to include in a queueing network a cache adopting a least-
recently used (LRU) replacement policy. Under LRU, upon a cache miss the least-recently accessed item
will be discarded to make room for the newly requested item.

We consider a cache with a capacity of 50 items, out of a set of 1000 cacheable items. Items are accessed
by jobs visiting the cache according to a Zipf-like law with exponent α = 1.4 and defined over the finite set
of items. A client cyclically issues requests for the items, waiting for a reply before issuing the next request.
We assume that a cache hit takes on average 0.2ms to process, while a cache hit takes 1ms. We ask for the
average request throughput of the system, differentiated across hits and misses.

Node block As usual, we begin by defining the nodes. Here a delay node will be used to describe the time
spent by the requests in the system, while the cache node will determine hits and misses:

model = Network('model')
clientDelay = Delay(model, 'Client')
cacheNode = Cache(model, 'Cache', 1000, 50, ReplacementStrategy.LRU)
cacheDelay = Delay(model, 'CacheDelay')

Class block We define a set of classes to represent the incoming requests (clientClass), cache hits
(hitClass) and cache misses (missClass). These classes need to be closed to ensure that there is a
single outstanding request from the client at all times:

clientClass = ClosedClass(model, 'ClientClass', 1, clientDelay, 0)
hitClass = ClosedClass(model, 'HitClass', 0, clientDelay, 0)
missClass = ClosedClass(model, 'MissClass', 0, clientDelay, 0)

We then assign the processing times, using the Immediate distribution to ensure that the client issues
immediately the request to the cache:

clientDelay.setService(clientClass, Immediate())
cacheDelay.setService(hitClass, Exp.fitMean(0.2))
cacheDelay.setService(missClass, Exp.fitMean(1.0))

2.2. GETTING STARTED EXAMPLES 23

The next step involves specifying that the request uses a Zipf-like distribution (with parameter α = 1.4) to
select the item to read from the cache, out of a pool of 1000 items

cacheNode.setRead(clientClass, Zipf(1.4, 1000))

Finally, we ask that the job should become of class hitClass after a cache hit, and should become of class
missClass after a cache miss:

cacheNode.setHitClass(clientClass, hitClass)
cacheNode.setMissClass(clientClass, missClass)

Topology block Next, in the topology block we setup the routing so that the request, which starts in
clientClass at the clientDelay, then moves from there to the cache, remaining in clientClass

P = model.initRoutingMatrix()
P.set(clientClass, clientClass, clientDelay, cacheNode, 1.0)

Internally to the cache, the job will switch its class into either hitClass or missClass. Upon departure
in one of these classes, we ask it to join in the same class cacheDelay for further processing

P.set(hitClass, hitClass, cacheNode, cacheDelay, 1.0)
P.set(missClass, missClass, cacheNode, cacheDelay, 1.0)

Lastly, the job returns to clientDelay for completion and start of a new request, which is done by
switching its class back to clientClass

P.set(hitClass, clientClass, cacheDelay, clientDelay, 1.0)
P.set(missClass, clientClass, cacheDelay, clientDelay, 1.0)

The above routing strategy is finally applied to the model

model.link(P)

Solution block To solve the model, since JMT does not support cache modeling, we use the native
MATLAB-based simulation engine provided within LINE, the SSA solver:

TODO: under development

The above script produces the following result

TODO: under development

The departing flows from the CacheDelay are the miss and hit rates. Thus, the hit rate is 2.4554 jobs per
unit time, while the miss rate is 0.50892 jobs per unit time.

24 CHAPTER 2. GETTING STARTED

Let us now suppose that we wish to verify the result with a longer simulation, for example with 10 times
more samples. To this aim, we can use the automatic parallelization of SSA

TODO: under development

This gives us a rather similar result, when run on a dual-core machine

TODO: under development

The execution time is longer than usual at the first invocation of the parallel solver due to the time needed
by MATLAB to bootstrap the parallel pool, in this example around 22 seconds. Successive invocations of
parallel SSA normally take much less, with this example around 7 seconds each.

2.2.9 Example 7: Response time distribution and percentiles

In this example we illustrate the computation of response time percentiles in a queueing network model. We
begin by instantiating a simple closed model consisting of a delay followed by a processor-sharing queueing
station.

model = Network("Model")

node = np.empty(2, dtype=object)
node[0] = Delay(model, 'Delay')
node[1] = Queue(model, 'Queue1', SchedStrategy.PS)

There is a single class consisting of 5 jobs that circulate between the two stations, taking exponential service
times at both.

jobclass = np.empty(2, dtype=object)
jobclass[0] = ClosedClass(model, 'Class1', 5, node[0], 0)
node[0].setService(jobclass[0], Exp(1.0))
node[1].setService(jobclass[0], Exp(0.5))

model.link(Network.serialRouting(node[0], node[1]))

We now wish to compare the response time distribution at the PS queue computed analytically with a
fluid approximation against the simulated values returned by JMT. To do so, we call the getCdfRespT
method

TODO: under development

RDfluid = SolverFluid(model).getCdfRespT()
RDsim = SolverJMT(model, 'seed', 23000, 'samples', 10000).getCdfRespT()

2.2. GETTING STARTED EXAMPLES 25

TODO . The first column represents the cumulative distribution function (CDF) value F (t) = Pr(T ≤
t), where T is the random variable denoting the response time, while t is the percentile appearing in the
corresponding entry of the second column.

For example, to plot the complementary CDF 1− F (t) we can use the following code

TODO: under development

which produces the graph shown in Figure ??

TODO: under development

The graph shows that, although the simulation refers to a transient, while the fluid approximation refers to
steady-state, there is a tight matching between the two response time distributions.

We can also readily compute the percentiles from the RDfluid and RDsim data structures, e.g., for
the 95th and 99th percentiles of the simulated distribution

TODO: under development

That is, 95% of the response times at the PS queue (node 2, class 1) are less than or equal to 27.0222 time
units, while 99% are less than or equal to 41.8743 time units.

2.2.10 Example 8: Optimizing a performance metric

In this example, we show how to optimize with the help of LINE a performance metric. We wish to find
the optimal routing probabilities that minimize average response times for two parallel processor sharing
queues. We assume that jobs are fed by a delay station, arranged with the two queues in a closed network
topology.

We first define a Python function with header

def objFun(p):

Within the function definition, we instantiate the two queues and the delay station

model = Network('LoadBalCQN')
delay = Delay(model, 'Think')
queue1 = Queue(model, 'Queue1', SchedStrategy.PS)
queue2 = Queue(model, 'Queue2', SchedStrategy.PS)

We assume that 16 jobs circulate among the nodes, and that the service rates are σ = 1 jobs per unit time at
the delay, and µ1 = 0.75 and µ2 = 0.50 at the two queues:

cclass = ClosedClass(model, 'Job1', 16, delay)
delay.setService(cclass, Exp(1))
queue1.setService(cclass, Exp(0.75))
queue2.setService(cclass, Exp(0.50))

26 CHAPTER 2. GETTING STARTED

We initially setup a topology with arbitrary values for the routing probabilities between delay and queues,
ensuring that jobs completing at the queues return to the delay:

P = model.initRoutingMatrix()
P.set(cclass, cclass, queue1, delay, 1.0)
P.set(cclass, cclass, queue2, delay, 1.0)
model.link(P)

We now return the system response time for the jobs as a function of the routing probability p to choose
queue 1 instead of queue 2:

P.set(cclass, cclass, delay, queue1, p)
P.set(cclass, cclass, delay, queue2, 1.0 - p)
model.reset()
model.link(P)
Block 4: solution
R = SolverMVA(model, 'method', 'exact', 'verbose', False).getAvgSysRespT()
return R[0]

Lastly, we optimize the function we defined

p_opt = optimize.fminbound(objFun, 0, 1)
print(p_opt[0])

We are now ready to run the example. The execution returns the optimal value 0.6104878504366782.

2.2.11 Example 9: Studying a departure process

This examples illustrates LINE’s support for extracting simulation data about particular events in an extended
queueing network, such as departures from a particular queue.

Our goal is to obtain the squared coefficient of variation of the inter-departure times from a M/E2/1
queue, which has Poisson arrivals and 2-phase Erlang distributed service times.

Because this is a classic model, we can find it in LINE’s model gallery. The additional return parameters
(e.g., source,queue, ...) provide handles to the entities within the model.

TODO: under development

We now extract 50,000 samples from simulation based on the underpinning continuous-time Markov chain

TODO: under development

The returned data structure supplies information about the stateful nodes (here source and queue) at each
of the 50,000 instants of sampling, together with the events that have been collected at these instants.

TODO: under development

2.2. GETTING STARTED EXAMPLES 27

As an example, the first two events occur both at timestamp 0 and indicate a departure event from node
1 (the type EventType.DEP maps to event: DEP) followed by an arrival event at node 2 (the type
EventType.ARV maps to event: ARV) which accepts it always (prob: 1).

TODO: under development

We may also plot the first 300 events as follows

TODO: under development

We are now ready to filter the timestamps of events related to departures from the queue node

TODO: under development

Followed by a calculation of the time series of inter-departure times

TODO: under development

We may now for example compute the squared coefficient of variation of this process

TODO: under development

which evaluates to 0.8750. Using Marshall’s exact formula for the GI/G/1 queue [35], we get a theoretical
value of 0.8750.

2.2.12 Example 10: Evaluating a CTMC symbolically

In this example, we will use MATLAB’s symbolic toolbox to examine the continuous-time Markov chain
underlying a simple closed queueing network. The network consists of a delay station and a processor
sharing station arrange in a cyclic topology. We may generate it using LINE’s demo gallery as follows

TODO: under development

Here, the first argument adds a single station to the next, while the second argument requires presence of a
delay station. The network has a single class with 4 circulating jobs.

The getSymbolicGeneratormethod of the CTMC solver can now be called to obtain the symbolic
generator

TODO: under development

The first returned argument is the symbolic infinitesimal generator

TODO: under development

There are therefore 5 states, corresponding to all possible way of distributing the 4 jobs across the two
stations

28 CHAPTER 2. GETTING STARTED

TODO: under development

An event is represented in LINE as a synchronization between an active agent and a passive agent. Typically,
the station that completes a job is an active agent, whereas the one that receives it is a passive agent. In this
sense, x1 and x2 may be seen as the rates at which the two agents synchronize to perform the two actions.

To learn the meaning of the symbolic variables x1 and x2we can now use the syncInfo data structure

TODO: under development

In the above, we see that x1 is a class-1 departure from station 1 (they delay) into station 2 (the processor
sharing queue), and viceversa x2 is a departure from station 2 that joins station 1.

TODO: under development

Chapter 3

Network models

Throughout this chapter, we discuss the specification of Network models, which are extended queueing
networks. LINE currently supports open, closed, and mixed networks with non-exponential service and
arrivals, and state-dependent routing. All solvers support the computation of basic performance metrics,
while some more advanced features are available only in specific solvers. Each Network model requires
in input a description of the nodes, the network topology, and the characteristics of the jobs that circulate
within the network. In output, LINE returns performance and reliability metrics.

The default metrics supported by all solvers are as follows:

• Mean queue-length (QLen). This is the mean number of jobs residing at a node when this is observed
at a random instant of time.

• Mean utilization (Util). For nodes that serve jobs, this is the mean fraction of time the node is busy
processing jobs. In both single-server and multi-server nodes, this is a number normalized between
0 and 1, corresponding to 0% and 100%. In infinite-server nodes, the utilization is set by convention
equal to the mean queue-length, therefore taking the interpretation of the mean number of jobs in
execution at the station.

• Mean response time (RespT). This is the mean time a job spends traversing a node within a network.
If the node is visited multiple times, the response time is the time spent for a single visit to the node.

• Mean residence time (ResidT). This is the total time a job accumulates, on average, to traverse a
node within a network. If the node is visited multiple times, the residence time is the time accumulated
overall visits to the node prior to returning to the reference station or arriving to a sink.

• Mean throughput (Tput). This is the mean departure rate of jobs completed at a resource per time
unit. Typically, this matches the mean arrival rate, unless the node switches the class of the jobs in
which case the arrival rate of a class may not match its departure rate.

29

30 CHAPTER 3. NETWORK MODELS

The above metrics refer to the performance characteristics of individual nodes. Response times and through-
puts can also be system-wide, meaning that they can describe end-to-end performance during the visit to the
network. In this case, these metrics are called system metrics.

3.1 Network object definition

3.1.1 Creating a network and its nodes

A queueing network can be described in LINE using the Network class constructor with a unique string
identifying the model name:

model = Network('myModel')

The returned object of the Network class offers functions to instantiate and manage resource nodes (sta-
tions, delays, caches, ...) visited by jobs of several types (classes).

A node is a resource in the network that can be visited by a job. A node must have a unique name and can
either be stateful or stateless, the latter meaning that the node does not require state variables to determine
its state or actions. If jobs visiting a stateful node can be required to spend time in it, the node is also said to
be a station. A list of nodes available in Network models is given in Table 3.1.1.

Table 3.1: Nodes available in Network models.
Node Description

Cache A node to switch job classes based on hits/misses in its cache
ClassSwitch A node to switch job classes based on a static probability matrix
Delay A station where jobs spend time without queueing
Fork A node that forks jobs into tasks
Join A node that joins sibling tasks into the original job
Logger A node that logs passage of jobs
Queue A node where jobs queue and receive service
Router A node that routes jobs to other nodes
Sink Exit point for jobs in open classes
Source Entry point for jobs in open classes

We now provide more details on each of the nodes available in Network models.

Queue node. A Queue specifies a queueing station from its name and scheduling strategy, e.g.

queue = Queue(model, 'Queue1', SchedStrategy.FCFS)

3.1. NETWORK OBJECT DEFINITION 31

specifies a first-come first-served queue. It is alternatively possible to instantiate a queue using the QueueingStation
constructor, which is merely an alias for Queue.

Queueing stations have by default a single server. The setNumberOfServers method can be used
to instantiate multi-server stations.

Valid scheduling strategies are specified within the SchedStrategy static class and include:

• First-come first-serve (SchedStrategy.FCFS)

• Infinite-server (SchedStrategy.INF)

• Processor-sharing (SchedStrategy.PS)

• Service in random order (SchedStrategy.SIRO)

• Discriminatory processor-sharing (SchedStrategy.DPS)

• Generalized processor-sharing (SchedStrategy.GPS)

• Shortest expected processing time (SchedStrategy.SEPT)

• Shortest job first (SchedStrategy.SJF)

• Head-of-line priority (non-preemptive) (SchedStrategy.HOL)

• Polling (SchedStrategy.POLLING)

If a strategy requires class weights, these can be specified directly as an argument to the setService
function or using the setStrategyParam function, see later the description of DPS scheduling for an
example.

Delay node. Delay stations, also called infinite server stations, may be instantiated either as objects of
Queue class, with the SchedStrategy.INF scheduling strategy, or using the following specialized
constructor

delay = Delay(model, 'ThinkTime')

As for queues, for readability it is possible to instantiate delay nodes using the DelayStation class
which is an alias for the Delay class.

Source and Sink nodes. As seen in the M/M/1 getting started example, these nodes are mandatory el-
ements for the specification of open classes. Their constructor only requires a specification of the unique
name associated to the nodes:

source = Source(model, 'Source')
sink = Sink(model, 'Sink')

32 CHAPTER 3. NETWORK MODELS

Fork and Join nodes. The fork and join nodes are currently available only for the JMT solver. The Fork
splits an incoming job into a set of sibling tasks, sending out one task for each outgoing link. These tasks
inherit the class of the original job and are served as normal jobs until they are reassembled at a Join
station.

Their specification of Fork and Join nodes only requires the name of the node

fork = Fork(model, 'Fork')
join = Join(model, 'Join', fork)

The number of tasks sent by a Fork on each output link can be set using the setTasksPerLink
method of the fork object. To enable effective analytical approximations, presently LINE requires that
every join node is bound to a specific fork node, although specific solvers will ignore this information (e.g.,
JMT).

Also note that the routing probabilities out of the Fork node need to be set to 1.0 towards every other
node connected to the Fork. For example, a Fork sending jobs in class 1 to nodes A, B and C, cannot
send jobs in class 2 only to A and B: it must send them to all three connected nodes A, B and C. A new
fork node visited only by class-2 jobs needs to be created in order to send that class of jobs only to A and B.

After splitting a job into tasks, LINE takes the convention that visit counts refer to the average number
of passages at the target resources for the original job, scaled by the number of tasks. For example, if a job
is split into two tasks at a fork node, each visiting respectively nodes A and B, the average visit count at A
and B will be 0.5.

ClassSwitch node. This is a stateless node to change the class of a transiting job based on a static proba-
bilistic policy. For example, it is possible to specify that all jobs belonging to class 1 should become of class
2 with probability 1.0, or that a transiting job of class 2 should become of class 1 with probability 0.3. This
example is instantiated as follows

cs = ClassSwitch(model, 'ClassSwitchPoint', [[0.0, 1.0], [0.3, 0.7]])

Cache node. This is a stateful node to store one or more items in a cache of finite size, for which it is
possible to specify a replacement policy. The cache constructor requires the total cache capacity and the
number of items that can be referenced by the jobs in transit, e.g.,

cacheNode = Cache(model, 'Cache1', nitems, capacity, ReplacementStrategy.LRU)

If the capacity is a scalar integer (e.g., 15), then it represents the total number of items that can be
cached and the value cannot be greater than the number of items. Conversely, if it is a vector of integers
(e.g., [10,5]) then the node is a list-based cache, where the vector entries specify the capacity of each list.
We point to [26] for more details on list-based caches and their replacement policies.

Available replacement policies are specified within the ReplacementStrategy static class and in-
clude:

3.1. NETWORK OBJECT DEFINITION 33

• First-in first-out (ReplacementStrategy.FIFO)

• Random replacement (ReplacementStrategy.RR)

• Least-recently used (ReplacementStrategy.LRU)

• Strict first-in first-out (ReplacementStrategy.SFIFO)

Upon cache hit or cache miss, a job in transit is switched to a user-specified class. More details are given
later in Section 3.1.5.

Router node. This node is able to route jobs according to a specified RoutingStrategy, which can
either be probabilistic or not (e.g., round-robin). Upon entering a Router, a job neither waits nor receives
service; it is instead directly forwarded to the next node according to the specified routing strategy. A
Router can be instantiated as follows:

router = Router(model, 'RouterNode')

An example of use of this node is given in Section 2.2.6. Routing strategies need to be specified for each
class using the setRouting method and valid choices are as follows

• Random routing (RoutingStrategy.RAND)

• Round robin (RoutingStrategy.RROBIN)

• Probabilistic routing (RoutingStrategy.PROB)

• Join-the-shortest-queue (RoutingStrategy.JSQ)

For example, assume that oclass is a class of jobs. In order to route jobs in this class with equal probabil-
ities to every outgoing link we set

router.setRouting(oclass, RoutingStrategy.RAND)

It should be noted that setRouting is also available for all other nodes such as queueing stations, delays,
etc. Therefore, the added value of the Router node is the ability to represent certain system elements that
centralize the routing logic, such as load balancers.

Logger node. A logger node is a node that closely resembles the logger node available in the JSIMgraph
simulator within JMT. At present, models that include this element can only be solved using the JMT solver.

A Logger node records information about passing jobs in a csv file, such as the timestamp of passage
and general information about the jobs. The node can be instantiated as follows

TODO: under development

The routing behavior of jobs can be set up as explained for regular nodes such as queues or delay stations.

34 CHAPTER 3. NETWORK MODELS

3.1.2 Advanced node parameters

Scheduling parameters

Upon setting service distributions at a station, one may also specify scheduling parameters such as weights
as additional arguments to the setService function. For example, if the node implements discriminatory
processor sharing (SchedStrategy.DPS), the command

queue.setService(class2, Cox2.fitMeanAndSCV(0.2,10), 5.0)

assigns a weight 5.0 to jobs in class 2. The default weight of a class is 1.0.

Finite buffers

The functions setCapacity and setChainCapacity of the Station class are used to place con-
straints on the number of jobs, total or for each chain, that can reside within a station. Note that LINE does
not allow one to specify buffer constraints at the level of individual classes unless chains contain a single
class, in which case setChainCapacity is sufficient for the purpose.

For example,

TODO: under development

creates an example model with two chains and three classes (specified in example closedModel 3.m)
and requires the second station to accept a maximum of one job in each chain. Note that if we were to ask
for a higher capacity, such as setChainCapacity([1,7]), which exceeds the total job population in
chain 2, LINE would have automatically reduced the value 7 to the chain 2 job population (2). This automatic
correction ensures that functions that analyze the state space of the model do not generate unreachable states.

The refreshCapacity function updates the buffer parameterizations, performing appropriate san-
ity checks. Since example closedModel 3 has already invoked a solver prior to our changes, the
requested modifications are materially applied by LINE to the network only after calling an appropriate
refreshStruct function, see the sensitivity analysis section. If the buffer capacity changes were made
before the first solver invocation on the model, then there would not be the need for a refreshCapacity
call, since the internal representation of the Network object used by the solvers is still to be created.

TODO: under development

3.1.3 Job classes

Jobs travel within the network placing service demands at the stations. The demand placed by a job at
a station depends on the class of the job. Jobs in open classes arrive from the external world and, upon
completing the visit, leave the network. Jobs in closed classes start within the network and are forbidden to
ever leave it, perpetually cycling among the nodes.

3.1. NETWORK OBJECT DEFINITION 35

Open classes

The constructor for an open class only requires the class name and the creation of special nodes called
Source and Sink

source = Source(model, 'Source')
sink = Sink(model, 'Sink')

Sources are special stations holding an infinite pool of jobs and representing the external world. Sinks are
nodes that route a departing job back into this infinite pool, i.e., into the source. Note that a network can
include at most a single Source and a single Sink.

Once source and sink are instantiated in the model, it is possible to instantiate open classes using

class1 = OpenClass(model, 'Class1')

LINE does not require explicitly associating source and sink with the open classes in their constructors, as
this is done automatically. However, the LINE language requires explicitly creating these nodes since the
routing topology needs to indicate the arrival and departure points of jobs in open classes. However, if the
network does not include open classes, the user will not need to instantiate a Source and a Sink.

Closed classes

To create a closed class, we need instead to indicate the number of jobs that start in that class (e.g., 5 jobs)
and the reference station for that class (e.g., queue), i.e.:

class2 = ClosedClass(model, 'Class2', 5, queue)

The reference station indicates a point in the network used to calculate certain performance indexes, called
system performance indexes. The end-to-end response time for a job in an open class to traverse the system
is an example of a system performance index (system response time). The reference station of an open
class is always automatically set by LINE to be the Source. Conversely, the reference station needs to
be indicated explicitly in the constructor for closed classes since the point at which a class job completes
execution depends on the semantics of the model.

LINE also supports a special class of jobs, called self-looping jobs, which perpetually loop at the refer-
ence station, remaining in their class. The following example shows the syntax to specify a self-looping job,
which is identical to closed classes but there is no need later to specify routing information.

model = Network('model')
delay = Delay(model, 'Delay')
queue = Queue(model, 'Queue1', SchedStrategy.FCFS)
cclass = ClosedClass(model, 'Class1', 10, delay, 0)
slclass = SelfLoopingClass(model, 'SLC', 1, queue, 0)
delay.setService(cclass, Exp(1.0))
queue.setService(cclass, Exp(1.5))

36 CHAPTER 3. NETWORK MODELS

queue.setService(slclass, Exp(1.5))
P = model.initRoutingMatrix()
P[0] = [[0.7,0.3],[1.0,0.0]]
model.link(P)

Note that any routing information specified for the self-looping class will be ignored.

Mixed models

LINE also accepts models where a user has instantiated both open and closed classes. The only requirement
is that, if two classes communicate by means of a class-switching mechanism, then the two classes must
either be all closed or all open. In other words, classes in the same chain must either be both closed or open.
Furthermore, for all closed classes in the same chain, it is required for the reference station to be the same.

Class priorities

If a class has a priority, with 0 representing the highest priority, this can be specified as an additional
argument to both OpenClass and ClosedClass, e.g.,

class2 = ClosedClass(model, 'Class2', 5, queue, 0)

In Network models, priorities are intended as hard priorities and the only supported priority scheduling
strategy (SchedStrategy.HOL) is non-preemptive. Weight-based policies such as DPS and GPS may
be used, as an alternative, to prevent starvation of jobs in low-priority classes.

Class switching

In LINE, jobs can switch their class while they travel between nodes (including self-loops on the same node).
For example, this feature can be used to model queueing properties such as re-entrant lines in which a job
visiting a station a second time may require a different average service demand than at its first visit.

A chain defines the set of reachable classes for a job that starts in the given class r and over time changes
class. Since class switching in LINE does not allow a closed class to become open, and vice-versa, chains
can themselves be classified into open chains and closed chains, depending on the classes that compose
them.

Jobs in open classes can only switch to another open class. Similarly, jobs in closed classes can only
switch to a closed class. Thus, class switching from open to closed classes (or vice-versa) is forbidden.
More details about class-switching are given in Section 3.1.5.

Reference station

Before we have shown that the specification of classes requires choosing a reference station. In LINE,
reference stations are properties of chains, thus if two closed classes belong to the same chain they must

3.1. NETWORK OBJECT DEFINITION 37

have the same reference station. This avoids ambiguities in the definition of the completion point for jobs
within a chain.

For example, the system throughput for a chain is defined as the sum of the arrival rates at the reference
station for all classes in that chain. That is, the solver counts a return to the reference station as a completion
of the visit to the system. In the case of open chains, the reference station is always the Source and the
system throughput corresponds to the rate at which jobs arrive at the sink Sink, which may be seen as the
arrival rate seen by the infinite pool of jobs in the external world. If there is no class switching, each chain
contains a single class, thus per-chain and per-class performance indexes will be identical.

Reference class

Occasionally, it is possible to encounter situations where a job needs to change class while remaining inside
the same station. In this case, LINE modifies the network automatically to introduce a class-switching node
for the job to route out of the station and immediately return to it in the new class.

One complication of the approach is that, by departing the node and returning to it, the job visits
the station one additional time, affecting the visit count to the station and therefore performance metrics
such as the residence time. To cope with this issue, LINE offers a method for the class objects, called
setReferenceClass, that allows users to specify whether the visit of that class to the reference station
should be considered upon computing the residence times across the network for the chain to which the
class belongs. By default, all classes traversing the reference station are used in the visit count calculation.

3.1.4 Routing strategies

Probabilistic routing

Jobs travel between nodes according to the network topology and a routing strategy. Typically a queueing
network will use a probabilistic routing strategy (RoutingStrategy.PROB), which requires specifying
routing probabilities among the nodes. The simplest way to specify a large routing topology is to define
the routing probability matrix for each class, followed by a call to the link function. This function will
automatically add certain nodes to the network to ensure the correct class switching for jobs moving between
stations (ClassSwitch elements).

In the running case, we may instantiate a routing topology as follows:

P = model.initRoutingMatrix()
P.set(class1, class1, source, queue, 1.0)
P.set(class1, class1, queue, queue, 0.3) # self-loop with probability 0.3
P.set(class1, class1, queue, delay, 0.7)
P.set(class1, class1, delay, sink, 1.0)
P.set(class2, class2, delay, queue, 1.0) # note: closed class jobs start at delay
P.set(class2, class2, queue, delay, 1.0)
model.link(P)

38 CHAPTER 3. NETWORK MODELS

When used as arguments to a cell array or matrix, class, and node objects will be replaced by a correspond-
ing numerical index. Normally, the indexing of classes and nodes matches the order in which they are
instantiated in the model and one can therefore specify the routing matrices using this property. In this case,
we would have

P = model.initRoutingMatrix()
pmatrix = np.empty(K, dtype=object)
pmatrix[0] = [[0,1,0,0], [0,0.3,0.7,0], [0,0,0,1], [0,0,0,0]]
pmatrix[1] = [[0,0,0,0], [0,0,1,0], [0,1,0,0], [0,0,0,0]]
P.setRoutingMatrix(jobclass, node, pmatrix)

Where needed, the getClassIndex and getNodeIndex functions return the numerical index associ-
ated with a node name, for example model.getNodeIndex(’Delay’). Class and node names in a
network must be unique. The list of names already assigned to nodes in the network can be obtained with
the getClassNames, getStationNames, and getNodeNames functions of the Network class.

It is also important to note that the routing matrix in the last example is specified between nodes, instead
of between just stations or stateful nodes, which means that for example elements such as the Sink need
to be explicitly considered in the routing matrix. The only exception is that ClassSwitch elements do
not need to be explicitly instantiated in the routing matrix, provided that one uses the link function to
instantiate the topology. Note that the routing matrix assigned to a model can be printed on the screen in a
human-readable format using the printRoutingMatrix function, e.g.,

model.printRoutingMatrix()

prints

Delay [Class1] => Queue1 [Class1] : Pr=1.0
Delay [Class2] => Queue1 [Class2] : Pr=0.001
Queue1 [Class1] => Queue1 [Class1] : Pr=0.3
Queue1 [Class1] => Source [Class1] : Pr=0.7
Queue1 [Class2] => Source [Class2] : Pr=1.0
Source [Class1] => Sink [Class1] : Pr=1.0
Source [Class2] => Queue1 [Class2] : Pr=1.0
Sink [Class2] => Source [Class2] : Pr=1.0

Other routing strategies

The above routing specification style is only for models with probabilistic routing strategies between every
pair of nodes. A different style should be used for scheduling policies that do not require to explicit routing
probabilities, as in the case of state-dependent routing. Currently supported strategies include:

• Round robin (RoutingStrategy.RROBIN). This is a deterministic strategy that sends jobs to
outgoing links in a cyclic order.

3.1. NETWORK OBJECT DEFINITION 39

• Random routing (RoutingStrategy.RAND). This is equivalent to a standard probabilistic strat-
egy that for each class assigns identical values to the routing probabilities of all outgoing links. When
a target is invalid its probability is kept to zero, e.g., random routing will not send a job in a closed
class to a sink.

• Join-the-Shortest-Queue (RoutingStrategy.JSQ). This is a non-probabilistic strategy that sends
jobs to the destination with the smallest total number of jobs in it (either queueing or receiving ser-
vice). If multiple stations have the same total number of jobs, then the destination is chosen at random
with equal probability.

For the above policies, the function addLink should be first used to specify pairs of connected nodes

model.addLink(queue, queue) #self-loop
model.addLink(queue, delay)

Then an appropriate routing strategy should be selected at every node, e.g.,

queue.setRouting(class1,RoutingStrategy.RROBIN)

assigns round robin among all outgoing links from the queue node.
A model could also include both classes with probabilistic routing strategies and classes that use round-

robin or other non-probabilistic strategies. To instantiate routing probabilities in such situations one should
then use, e.g.,

queue.setRouting(class1,RoutingStrategy.PROB)
queue.setProbRouting(class1, queue, 0.7)
queue.setProbRouting(class1, delay, 0.3)

where setProbRouting assigns the routing probabilities to the two links.

Routing probabilities for Source and Sink nodes

In the presence of open classes, and in mixed models with both open and closed classes, one needs only to
specify the routing probabilities out of the source. The probabilities out of the sink can all be set to zero
for all classes and destinations (including self-loops). The solver will take care of adjusting these inputs to
create a valid routing table.

Simplified definition of tandem and cyclic topologies

Tandem networks are open queueing networks with a serial topology. LINE provides functions that ease the
definition of tandem networks of stations with exponential service times. For example, the getting started
Example 1 on the M/M/1 queue illustrates a simplified way to specify a serial routing topology, i.e.,

model.link(Network.serialRouting(source,queue,sink))

40 CHAPTER 3. NETWORK MODELS

In a similar fashion, we can also rapidly instantiate a tandem network consisting of stations with PS and INF
scheduling as follows

TODO: under development
lambda = [10,20] # lambda(r) - arrival rate of class r
D = [[11,12], [21,22]] # D(i,r) - class-r demand at station i (PS)
Z = [[91,92], [93,94]] # Z(i,r) - class-r demand at station i (INF)
modelPsInf = Network.tandemPsInf(lambda,D,Z)

The above snippet instantiates an open network with two queueing stations (PS), two delay stations (INF),
and exponential distributions with the given inter-arrival rates and mean service times. The Network.tandemPs,
Network.tandemFcfs, and Network.tandemFcfsInf functions provide static constructors for
networks with other combinations of scheduling policies, namely only PS, only FCFS, or FCFS and INF.

A tandem network with closed classes is instead called a cyclic network. Similar to tandem networks,
LINE offers a set of static constructors:

• Network.cyclicPs: cyclic network of PS queues

• Network.cyclicPsInf: cyclic network of PS queues and delay stations

• Network.cyclicFcfs: cyclic network of FCFS queues

• Network.cyclicFcfsInf: cyclic network of FCFS queues and delay stations

These functions only require replacing the arrival rate vector A by a vector N specifying the job populations
for each of the closed classes, e.g.,

TODO: under development

3.1.5 Class switching

Depending on the specified probabilities, a job will be able to switch its class only among a subset of the
available classes. Each subset is called a chain. Chains are computed in LINE as the weakly connected
components of the routing probability matrix of the network when this is seen as an undirected graph.
The function model.getChains() produces the list of chains for the model, inclusive of a list of their
composing classes.

The definition of class switching in a model is integrated in the specification of the routing between
stations as described in the next subsection.

Probabilistic class switching

In models with class switching and probabilistic routing at all nodes, a routing matrix is required for each
possible pair of source and target classes. For instance, suppose that in the previous example the job in the

3.1. NETWORK OBJECT DEFINITION 41

closed class class2 switches into a new closed class (class3) while visiting the queue node. We can
specify this routing strategy as follows:

TODO: under development

Importantly, LINE assumes that a job switches class an instant after leaving a station, thus the perfor-
mance metrics of a class at the node refer to the class that jobs had upon arrival to that node.

Class switching with non-probabilistic routing strategies

In the presence of non-probabilistic routing strategies, such as round-robin or join-the-shortest-queue, one
may need to manually specify the details of the class switching mechanism. This can be done through
addition to the network topology of ClassSwitch nodes.

The constructor of the ClassSwitch node requires to specify a probability matrix C such that the
lement in row r and column s is the probability that a job of class r arriving into the node switches to class
s during the visit. For example, in a 2-class model, the following node will switch all visiting jobs into class
2

Block 1: nodes
...
csnode = ClassSwitch(model, 'ClassSwitch 1')
Block 2: classes
jobclass = np.empty(2, dtype=object)
jobclass[0] = OpenClass(model, 'Class1', 0)
jobclass[1] = OpenClass(model, 'Class2', 0)
...
Block 3: topology
C = csnode.initClassSwitchMatrix()
C[0][1] = 1.0
C[1][1] = 1.0
csnode.setClassSwitchingMatrix(C)

Note that for a network with M stations, up to M2 ClassSwitch elements may be required to implement
class-switching across all possible links, including self-loops.

Cache-based class-switching

An advanced feature of LINE available for example within the Cache node, is that the class-switching
decision can dynamically depend on the state of the node (e.g., cache hit/cache miss). However, in order
to statically determine chains, LINE requires that every class-switching node declares the pair of classes
that can potentially communicate with each other via a switch. This is called the class-switching mask and
it is automatically computed. The boolean matrix returned by the model.getClassSwitchingMask
function provides this mask, which has an entry in row r and column s set to true only if jobs in class r can
switch into class s at some node in the network.

42 CHAPTER 3. NETWORK MODELS

Upon cache hit or cache miss, a job in transit is switched to a user-specified class, as specified by the
setHitClass and setMissClass, so that it can be routed to a different destination based on whether it
found the item in the cache or not. The setRead function allows the user to specify a discrete distribution
(e.g., Zipf, DiscreteSampler) for the frequency at which an item is requested. For example,

refModel = Zipf(0.5,nitems)
cacheNode.setRead(initClass, refModel)
cacheNode.setHitClass(initClass, hitClass)
cacheNode.setMissClass(initClass, missClass)

Here initClass, hitClass, and missClass can be either open or closed instantiated as usual with
the OpenClass or ClosedClass constructors.

3.1.6 Service and inter-arrival time processes

A number of statistical distributions are available to specify job service times at the stations and inter-arrival
times from the Source station. The class PhaseType offers distributions that are analytically tractable,
which are defined using absorbing Markov chains consisting of one or more states (phases) and called
phase-type distributions. They include as special cases the following distributions:

• Exponential distribution: Exp(λ), where λ is the rate of the exponential

• n-phase Erlang distribution: Erlang(α, n), where α is the rate of each of the n exponential phases

• 2-phase hyper-exponential distribution: HyperExp(p, λ1, λ2), that returns an exponential with rate
λ1 with probability p, and an exponential with rate λ2 otherwise.

• n-phase hyper-exponential distribution: HyperExp(p, λ), that builds a n-phase hyper-exponential
from a rate vector λ = [λ1, . . . , λn] and phase selection probabilities p = [p1, . . . , pn].

• 2-phase Coxian distribution: Coxian(µ1, µ2, ϕ1), which assigns phases µ1 and µ2 to the two rates,
and completion probability from phase 1 equal to ϕ1 (the probability from phase 2 is ϕ2 = 1.0).

• n-phase Coxian distribution: Coxian(µ, ϕ), which builds an arbitrary Coxian distribution from a
vector µ = [µ1, . . . , µn] of n rates and a completion probability vector ϕ = [ϕ1, . . . , ϕn] with ϕn =
1.0.

• n-phase acyclic phase-type distribution: APH(α, T), which defines an acyclic phase-type distribution
with initial probability vector α = [α1, . . . , αn] and transient generator T .

For example, given mean µ = 0.2 and squared coefficient of variation SCV=10, where SCV=variance/µ2,
we can assign to a node a 2-phase Coxian service time distribution with these moments as

queue.setService(class2, Cox2.fitMeanAndSCV(0.2,10.0))

3.1. NETWORK OBJECT DEFINITION 43

where Cox2 is a static class to fit 2-phase Coxian distributions. Inter-arrival time distributions can be
instantiated in a similar way, using setArrival instead of setService on the Source node. For
example, if the Source is node 3 we may assign the inter-arrival times of class 2 to be exponential with
mean 0.1 as follows

source.setArrival(class2, Exp.fitMean(0.1))

Is it also possible to plot the structure of a phase-type distribution using PhaseType.plot static
method.

Non-Markovian distributions are also available, but typically they can restrict the available solvers to the
JMT simulator. They include the following distributions:

• Deterministic distribution: Det(µ) assigns probability 1.0 to the value µ.

• Uniform distribution: Uniform(a, b) assigns uniform probability 1/(b− a) to the interval [a, b].

• Gamma distribution: Gamma(α, k) assigns a gamma density with shape α and scale k.

• Pareto distribution: Pareto(α, k) assigns a Pareto density with shape α and scale k.

Lastly, we discuss two special distributions. The Disabled distribution can be used to explicitly forbid
a class to receive service at a station. This may be useful to declare in models with sparse routing matrices
to debug the model specification. Performance metrics for disabled classes will be set to NaN.

Conversely, the Immediate class can be used to specify instantaneous service (zero service time). Nor-
mally, LINE solvers will replace zero service times with small positive values (ε =GlobalConstants.FineTol).

Fitting a distribution

The fitMeanAndSCV function is available for all distributions that inherit from the PhaseType class.
This function provides exact or approximate matching of the first two moments, depending on the theoretical
constraints imposed by the distribution. For example, an Erlang distribution with SCV=0.75 does not exist,
because in a n-phase Erlang it must be SCV=1/n. In a case like this, Erlang.fitMeanAndSCV(1,0.75)
will return the closest approximation, e.g., a 2-phase Erlang (SCV=0.5) with unit mean. The Erlang distri-
bution also offers a function fitMeanAndOrder(µ, n), which instantiates a n-phase Erlang with given
mean µ.

In distributions that are uniquely determined by more than two moments, fitMeanAndSCV chooses a
particular assignment of the residual degrees of freedom other than mean and SCV. For example, HyperExp
depends on three parameters, therefore it is insufficient to specify mean and SCV to identify the distribution.
Thus, HyperExp.fitMeanAndSCV automatically chooses to return a probability of selecting phase 1
equal to 0.99. Compared to other choices, this particular assignment corresponds to a higher probability
mass in the tail of the distribution. HyperExp.fitMeanAndSCVBalanced instead assigns p in a two-
phase hyper-exponential distribution so that p/µ1 = (1− p)/µ2.

44 CHAPTER 3. NETWORK MODELS

Inspecting and sampling a distribution

To verify that the fitted distribution has the expected mean and SCV it is possible to use the getMean and
getSCV functions, e.g.,

TODO: under development

Moreover, the sample function can be used to generate values from the obtained distribution, e.g. we can
generate 3 samples as

TODO: under development

The evalCDF and evalCDFInterval functions return the cumulative distribution function at the spec-
ified point or within a range, e.g.,

TODO: under development

For more advanced uses, the distributions of the PhaseType class also offer the possibility to obtain
the standard (D0, D1) representation used in the theory of Markovian arrival processes by means of the
getRepresentation function [5].

Load-dependent service

A queueing station i is called load-dependent whenever its service rate is a function of the number ni

of resident jobs at the station, summed across the ones in service and the ones in the waiting buffer. For
example, a multi-server station with c identical servers, each with processing rate µ, may be shown to behave
similarly to a single-server load-dependent station where the service rate is µ(ni) = µα(ni) = µmin(ni, c).

LINE presently supports limited load-dependence [12], meaning that it is possible to specify the form
of the load-dependent service up to a finite range of ni. As such, the support is currently limited to closed
models, which are guaranteed to have a finite population at all times.

To specify a load-dependence service for a queueing station over the range ni ∈ [1, N] it is sufficient
to call the setLoadDependence method, passing a vector of size N in its input with the scaling factor
values for each ni. For example, to instantiate a c-server node we write

queue.setLoadDependence(np.minimum(np.arange(0,N,1),c)) % multi-server with c ...
servers

where the i-th element of the vector argument of setLoadDependence is the scaling factor α(ni). It is
assumed by default that α(0) = 1.

Class-dependent service

A generalization of load-dependent service is class-dependent service, where the service rate is now a func-
tion of the vector ni = [ni,1, . . . , ni,R], where ni,r is the current number of class-r jobs at station i.

3.2. INTERNALS 45

LINE supports class-dependence in the MVA solver, provided that this is specified as a function handle.
The solver implicitly assumes that the function is smooth and defined also for fractional values of ni,r. For
example, in a two-class model we may write

TODO: under development

applies a multiserver-type only to class-2 jobs, but not to the others.

TODO: under development

Temporal dependent processes

It is sometimes useful to specify the statistical properties of a time series of service or inter-arrival times, as
in the case of systems with short- and long-range dependent workloads. When the model is stochastic, we
refer to these as situations where one specifies a process, as opposed to only specifying the distribution of
the service or inter-arrival times. In LINE processes inherit from the PointProcess class, and include
the 2-state Markov-modulated Poisson process (MMPP2) and empirical traces read from files (Replayer).

For the latter, LINE assumes that empirical traces are supplied as text files (ASCII), formatted as a
column of numbers. Once specified, the Replayer object can be used as any other distribution. This
means that it is possible to run a simulation of the model with the specified trace. However, analytical
solvers will require tractable distributions from the PhaseType class.

3.2 Internals

In this section, we discuss the internal representation of the Network objects used within the LINE solvers.
By applying changes directly to this internal representation it is possible to considerably speed up the se-
quential evaluation of models.

3.2.1 Representation of the model structure

For efficiency reasons, once a user requests to solve a Network, LINE calls internally generate a static
representation of the network structure using the refreshStruct function. This function returns a rep-
resentation object that is then passed on to the chosen solver to parameterize the analysis.

The representation used within LINE is the NetworkStruct class, which describes an extended mul-
ticlass queueing network with class-switching and acyclic phase-type (APH) service times. APH generalizes
known distributions such as Coxian, Erlang, Hyper-Exponential, and Exponential. The representation can
be obtained as follows

sn = model.getStruct()

46 CHAPTER 3. NETWORK MODELS

The next tables present the properties of the NetworkStruct class. Table ?? gives the invariant properties
of the class, which specify the initial parameterization of the nodes, which we refer to as static parameters.
Table ?? further details parameters that require algorithmic calculations to derive from the static parameters.

TODO: under development
TODO: under development
For advanced nodes, such as Cache and Transition, additional parameters are specified under the nodeparam

cell array for the corresponding node. Table 3.2.1 illustrates the properties specified within the nodeparam{i}
cell array for Transition node i. Table 3.2.1 similarly illustrates the properties in nodeparam{i} array for
a Cache node i.

Table 3.2: nodeparam{i} fields for a Transition node i
Field Type Description
enabling{m}(k, r) integer Enabling condition for mode m at transition node i with respect to class r jobs at

linked node k

firing{m}(k, r) integer Firing outputs of class r jobs for mode m at transition node i towards linked node k

firingprio(m) integer Firing priority for mode m at transition node i

firingid(m) integer Firing type at node i for mode m (e.g., TimingStrategy.IMMEDIATE)
firingphases(m) integer Number of phases for firing process of mode m at node i

firingproc{m} cell Matrix representation of the mode m firing process at transition node i

firingprocid(m) integer Firing process type id for mode m (e.g., ProcessType.ID HYPEREXP)
fireweight(m) integer Firing weight for mode m at transition node i

inhibiting{m}(k, r) integer Inhibiting condition for mode m at transition node i with respect to class r jobs at
linked node k

modenames{m} string Name of mode m at transition node i

nmodes integer Number of modes for transition node i

nmodeservers{m} integer Number of servers for mode m

Table 3.3: nodeparam{i} fields for a Cache node i
Field Type Description
accost{r, i}(l, h) double Access cost for class r to move item i from list l to list h.
hitclass(r) integer Class switching for class r under a cache hit
itemcap(l) integer Item capacity in list l
missclass(r) integer Class switching for class r under a cache miss
nitems integer Number of items
pread{r}(i) double Probability for class r of reading item i

rpolicy integer Replacement policy id (e.g., ReplacementPolicy.ID LRU)

As shown in the tables, internally to LINE there is an explicit differentiation between properties of
nodes, stations, and stateful nodes. This distinction has impact in particular over routing and class-switching
mechanisms, and also allows solvers to better differentiate between different kinds of nodes.

3.3. DEBUGGING AND VISUALIZATION 47

In some cases, one may want to access some properties of nodes that are contained in NetworkStruct
fields that are however referenced by station or stateful node index. To help this and similar situations, the
NetworkStruct class also provides static methods to quickly convert the indexing of nodes, stations, and
stateful nodes, which is used in referencing its data structures:

• nodeToStateful

• nodeToStation

• stationToNode

• stationToStateful

• statefulToNode

As an example, we can determine the portion of the nodevisits field that refers to stateful nodes in chain
c = 1 as follows

TODO: under development

3.3 Debugging and visualization

JSIMgraph is the graphical simulation environment of the JMT suite. LINE can export models to this
environment for visualization purposes using the command

TODO: under development

An example is shown in Figure Figure 3.1 below. Using a related function, jsimwView, it is also possible
to export the model to the JSIMwiz environment, which offers a wizard-based interface.

Another way to debug a LINE model is to transform it into a MATLAB graph object, e.g.

TODO: under development

plots a graph of the network topology in term of stations only. In a similar manner, the following variant
of the same command shows the model in terms of nodes, which corresponds to the internal representation
within LINE.

TODO: under development

The latter example is invoked by default if we type

TODO: under development

48 CHAPTER 3. NETWORK MODELS

Figure 3.1: jsimgView function

which also adds automatic node coloring to highlight the class-switch nodes.
Figure 3.2 shows the difference between the two commands for an open queueing network with two

classes and class-switching. Weights on the edges correspond to routing probabilities. In the station topology
on the left, note that since the Sink node is not a station, departures to the Sink are drawn as returns to
the Source. The node topology on the right, illustrates all nodes, including ClassSwitch nodes that
are automatically added by LINE to apply the class-switching routing strategy. Double arcs between nodes
indicate that both classes are routed to the destination.

Furthermore, the graph properties concisely summarize the key features of the network

TODO: under development

Here, Edge.Weight is the routing probability between the nodes, whereas Edge.Rate is the service
rate of the node appearing in the first column under EndNodes.

3.4 Model import and export

LINE offers a number of scripts to import external models into Network object instances that can be
analyzed through its solvers. The available scripts are as follows:

• JMT2LINE imports a JMT simulation model (.jsimg or .jsimw file) instance.

3.4. MODEL IMPORT AND EXPORT 49

Figure 3.2: getGraph function: station topology (left) and node topology (right) for a 2-class tandem
queueing network with class-switching.

• PMIF2LINE imports an XML file containing a PMIF 1.0 model.

Both scripts require in input the filename and desired model name, and return a single output, e.g.,

TODO: under development

where sn is an instance of the Network class.

TODO: under development

TODO: under development

3.4.1 Creating a LINE model using JMT

Using the features presented in the previous section, one can create a model in JMT and automatically
derive a corresponding LINE script from it. For instance, the following command performs the import and
translation into a script, e.g.,

TODO: under development

transforms and save the given JSIMgraph model into a corresponding LINE model.
LINE also provides two static functions to inspect jsimg and jsimw files before conversion, called

SolverJMT.jsimgOpen and SolverJMT.jsimwOpen require as an input parameter only the JMT
file name, e.g., myModel.jsimg.

It is also possible to automate the editing and import of JMT models from MATLAB using the jsimgEdit
command. This will open an empty JMT model and upon saving this will be automatically reimported into
MATLAB.

50 CHAPTER 3. NETWORK MODELS

3.4.2 Supported JMT features

Table 3.4 lists the JSIMgraph/JSIMwiz model features supported by the JMT2LINE transformation. We
indicate as “Fully” supported a feature that is supported in the import and such that the resulting model
can be solved in LINE using at least SolverJMT. A feature with “Partial” support implies that some core
aspects of this feature available in JSIM are not available in LINE.

A few notes are needed to clarify the entries with partial support:

• Fork and Join are supported with their default policies. Advanced policies, such as partial joins or
setting a distribution for the forked tasks on each output link, are not supported yet.

• a single Sink and a single Source can be instantiated in a LINE model, whereas there is no such
constraint in JMT.

3.4. MODEL IMPORT AND EXPORT 51

Table 3.4: Supported JSIM features for automated model import and analysis
JMT Feature Support Notes
Distributions Full Phase-Type, Burst (MAP), Burst (MMPP2), Deterministic, Dis-

abled, Exponential, Erlang, Gamma, Hyperexponential, Coxian, Lo-
gistic, Pareto, Uniform, Zero Service Time, Replayer, Weibull

Classes Full Open class, Closed class, Class priorities
Metrics Full Number of customers, Residence Time, Throughput, Response

Time, Throughput per sink, Utilization, Arrival Rate
Nodes Full Finite Capacity Region, ClassSwitch, Place, Delay, Logger, Queue,

Router, Transition
Routing Full Random, Probabilities, Round Robin, Join the Shortest Queue
Mechanisms Full N/A
Scheduling Full FCFS, HOL, LCFS, LCFS-PR, SIRO (Random), SJF, SEPT, LJF,

LEPT, PS, DPS, GPS

Nodes Partial Fork, Join, Source, Sink

Distributions No Burst (General), Normal
Nodes No Scaler, Semaphore
Routing No Shortest Response Time, Least Utilization, Fastest Service, Load De-

pendent, Class Switch Routing
Metrics No Drop rate, Response time per sink, Power
Scheduling No LPS, EDD, EDF, TBS, SRPT
Mechanisms No Load Dependence, Retrial, Impatience, Soft deadlines, Parallelism, ,

Heterogeneous servers, Server Compatibilities, Setup times, Polling,
Switchover times

Chapter 4

Analysis methods

4.1 Performance metrics

As discussed earlier, LINE supports a set of steady-state and transient performance metrics. Table 4.1
summarizes the definition of the associated random variables. For each metric, one or more analysis types
may be available, which are extensively discussed in the next sections.

Table 4.1: Performance metrics
Metric Acronym Description
Queue-length QLen Number of jobs of class r (or chain-c) residing at a node i

Utilization Util Utilization of class-r (or chain-c) jobs at node i, scaled in [0,1] for multi-server nodes, equal to QLen
at infinite server nodes

Response time RespT Time that a class-r (or chain-c) jobs spends for a single visit at node i

Residence time ResidT Cumulative time that a class-r (or chain-c) jobs spends across all visits at node i

Arrival rate ArvR Arrival rate of class-r (or chain-c) jobs at node i

Throughput Tput Throughput of class-r (or chain-c) jobs at node i

System Response time SysRespT For a open chain c, this is the time from leaving the source to arriving at the sink for any class in the
chain. For a closed chain c, this is the interval of time between two successive visits to the reference
station in any two completing classes within the chain.

System Throughput SysTput For a open chain c, this is the departure rate towards the sink for any class in the chain. For a closed
chain c, this is the rate of arrival of completing classes in the chain at the reference station.

4.2 Steady-state analysis

4.2.1 Station average performance

LINE decouples network specification from its solution, allowing to evaluate the same model with multiple
solvers. Model analysis is carried out in LINE according to the following general steps:

Step 1: Definition of the model. This proceeds as explained in the previous chapters.

52

4.2. STEADY-STATE ANALYSIS 53

Step 2: Instantiation of the solver(s). A solver is an instance of the Solver class. LINE offers multiple
solvers, which can be configured through a set of common and individual solver options. For example,

solver = SolverJMT(model)

returns a handle to a simulation-based solver based on JMT, configured with default options.

Step 3: Solution. Finally, this step solves the network and retrieves the concrete values for the performance
indexes of interest. This may be done as follows, e.g.,

QN(i,r): mean queue-length of class r at station i
QN = solver.getAvgQLen()
UN(i,r): utilization of class r at station i
UN = solver.getAvgUtil()
RN(i,r): mean response time of class r at station i (per visit)
RN = solver.getAvgRespT()
TN(i,r): mean throughput of class r at station i
TN = solver.getAvgTput()
AN(i,r): mean arrival rate of class r at station i
AN = solver.getAvgArvR()
WN(i,r): mean residence time of class r at station i (summed on visits)
WN = solver.getAvgResidT()

Alternatively, all the above metrics may be obtained in a single method call as

TODO: under development

In the methods above, LINE assigns station and class indexes (e.g., i, r) in order of creation in order of
creation of the corresponding station and class objects. However, large models may be easier to debug by
checking results using class and station names, as opposed to indexes. This can be done either by requesting
LINE to build a table with the result

TODO: under development

which however tends to be a rather slow data structure to use in case of repeated invocations of the solver,
or by indexing the matrices returned by getAvg using the model objects. That is, if the first instantiated
node is queue with name MyQueue and the second instantiated class is cclass with name MyClass,
then the following commands are equivalent

TODO: under development

Similar methods are defined to obtain aggregate performance metrics at chain level at each station, namely
getAvgQLenChain for queue-lengths, getAvgUtilChain for utilizations, getAvgRespTChain
for response times, getAvgTputChain for throughputs, and the getAvgChain method to obtain all
the previous metrics.

54 CHAPTER 4. ANALYSIS METHODS

4.2.2 Station response time distribution

SolverFluid supports the computation of response time distributions for individual classes through the
getCdfRespT function. The function returns the response time distribution for every station and class.
For example, the following code plots the cumulative distribution function at steady-state for class 1 jobs
when they visit station 2:

TODO: under development

4.2.3 System average performance

LINE also allows users to analyze models for end-to-end performance indexes such a system throughput
or system response time. However, in models with class switching the notion of system-wide metrics can
be ambiguous. For example, consider a job that enters the network in one class and departs the network
in another class. In this situation one may attribute system response time to either the arriving class or the
departing one, or attempt to partition it proportionally to the time spent by the job within each class. In
general, the right semantics depends on the aim of the study.

LINE tackles this issue by supporting only the computation of system performance indexes by chain,
instead than by class. In this way, since a job switching from a class to another remains by definition in
the same chain, there is no ambiguity in attributing the system metrics to the chain. The solver functions
getAvgSys and getAvgSysTable return system response time and system throughput per chain as
observed: (i) upon arrival to the sink, for open classes; (ii) upon arrival to the reference station, for closed
classes.

In some cases, it is possible that a chain visits multiple times the reference station before the job com-
pletes. This also affects the definition of the system averages, since one may want to avoid counting each
visit as a completion of the visit to the system. In such cases, LINE allows users to specify which classes of
the chain can complete at the reference station. For example, in the code below we require that a job visits
reference station 1 twice, in classes 1 and 2, but completes at the reference station only when arriving in
class 2. Therefore, the system response time will be counted between successive passages in class 2.

TODO: under development

Note that the completes property of a class always refers to the reference station for the chain.

4.3 Specifying states

In some analyses it is important to specify the state of the network, for example to assign the initial position
of the jobs in a transient analysis. We thus discuss the support in LINE for state modeling.

4.3. SPECIFYING STATES 55

4.3.1 Station states

We begin by explaining how to specify a state s0 for a station. For example, it is not supported for shortest
job first (SchedStrategy.SJF) scheduling, in which state must include the service time samples for the
jobs and it is therefore a continuous quantity.

Suppose that the network has R classes and that service distributions are phase-type, i.e., that they inherit
from PhaseType. Let Kr be the number of phases for the service distribution in class r at a given station.
Then, we define three types of state variables:

• cj : class of the job waiting in position j ≤ b of the buffer, out of the b currently occupied positions. If
b = 0, then the state vector is indicated with a single empty element c1 = 0.

• kj : service phase of the job waiting in position j ≤ b of the buffer, out of the b currently occupied
positions.

• nr: total number of jobs of class r in the station

• br: total number of jobs of class r in the station’s buffer

• srk: total number of jobs of class r running in phase k in the server

Here, by phase we mean the number of states of a distribution of class PhaseType. If the distribution is
not Markovian, then there is a single phase. With these definitions, the table below illustrates how to specify
in LINE a valid state for a station depending on its scheduling strategy. There, S is the number of servers of
the queueing station. All state variables are non-negative integers. The SchedStrategy.EXT policy is
used for the Source node, which may be seen as a special station with an infinite pool of jobs sitting in the
buffer and a dedicated server for each class r = 1, ..., R.

Table 4.2: State descriptors for Markovian scheduling policies
Sched. strategy Station state vector State condition
EXT [Inf, s11, ..., s1K1 , ..., sR1, ..., sRKR

]
∑

k srk = 1, ∀r
FCFS, HOL, LCFS [cb, ..., c1, s11, ..., s1K1 , ..., sR1, ..., sRKR

]
∑

r

∑
k srk = S

LCFSPR [cb, kb, ..., c1, k1, s11, ..., s1K1 , ..., sR1, ..., sRKR
]

∑
r

∑
k srk = S

SEPT, SIRO [b1, ..., bR, s11, ..., s1K1 , ..., sR1, ..., sRKR
]

∑
r

∑
k srk = S

PS, DPS, GPS, INF [s11, ..., s1K1 , ..., sR1, ..., sRKR
] None

States can be manually specified or enumerated automatically. LINE library functions for handling and
generating states are as follows:

• State.fromMarginal: enumerates all states that have the same marginal state [n1, n2, ..., nR].

56 CHAPTER 4. ANALYSIS METHODS

• State.fromMarginalAndRunning: restricts the output of State.fromMarginal to states
with given number of running jobs, irrespectively of the service phase in which they currently run.

• State.fromMarginalAndStarted: restricts the output of State.fromMarginal to states
with given number of running jobs, all assumed to be in service phase k = 1.

• State.fromMarginalBounds: similar to State.fromMarginal, but produces valid states
between given minimum and maximum value of the number of resident jobs.

• State.toMarginal: extracts marginal statistics from a state, such as the total number of jobs in
a given class that are running at the station in a certain phase.

Note that if a function call returns an empty state ([]), this should be interpreted as an indication that no
valid state exists that meets the required criteria. Often, this is because the state supplied in input is invalid.

Example

We consider the example network in TODO. We look at the state of station 3, which is a multi-server FCFS
station. There are 4 classes all having exponential service times except class 2 that has Erlang-2 service
times. We are interested to states with 2 running jobs in class 1 and 1 in class 2, and with 2 jobs, respectively
of classes 3 and 4, waiting in the buffer. We can automatically generate this state space, which we store in
the space variable, as:

TODO: under development

Here, each row of space corresponds to a valid state. The argument TODO gives the number of jobs in the
node for the 4 classes, while TODO gives the number of running jobs in each class. This station has four
valid states, differing on whether the class-2 job runs in the first or in the second phase of the Erlang-2 and
on the relative position of the jobs of class 3 and 4 in the waiting buffer.

To obtain states where the jobs have just started running, we can instead use

TODO: under development

We see that the above state space restricted the one obtained with State.fromMarginalAndRunning
to states where the job in class 1 is always in the first phase.

If we instead remove the specification of the running jobs, we can use State.fromMarginal to
generate all possible combinations of states depending on the class and phase of the running jobs. In the
example, this returns a space of 20 possible states.

TODO: under development

4.3. SPECIFYING STATES 57

Assigning a prior to an initial state

It is possible to assign the initial state to a station using the setState function on that station’s object.
LINE offers the possibility to specify a prior probability on the initial states, so that if multiple states have a
non-zero prior, then the solver will need to solve an independent model using each one of those initial states,
and then carry out a weighting of the results according to the prior probabilities. The default is to assign a
probability 1.0 to the first specified state. The functions setStatePrior and getStatePrior of can
be used to check and change the prior probabilities for the initial states specified for a station or stateful
node.

4.3.2 Network states

A collection of states that are valid for each station is not necessarily valid for the network as a whole. For
example, if the sum of jobs of a closed class exceeds the population of the class, then the network state would
be invalid. To identify these situations, LINE requires to specify the initial state of a network using functions
supplied by the Network class. These functions are initFromMarginal, initFromMarginalAndRunning,
and initFromMarginalAndStarted. They require a matrix n with elements (i, r) specifying the to-
tal number of resident class-r jobs at node i and the latter two require a matrix s with elements (i, r) with
the number of running (or started) class-r jobs at node i. The user can also manually verify if the supplied
network state is going to be valid using State.IsValid.

It is also possible to request LINE to automatically identify a valid initial state, which is done using the
initDefault function available in the Network class. This is going to select a state where:

• no jobs in open classes are present in the network;

• jobs in closed classes all start at their reference stations;

• the servers at each reference station are occupied by jobs of in class order, i.e., jobs in the firstly
created class are assigned to the server, then spare server are allocated to jobs in the second class, and
so forth;

• service or arrival processes are initialized in phase 1 for each job;

• if the scheduling strategy requires it, jobs are ordered in the buffer by class, with the firstly created
class at the head and the lastly created class at the tail of the buffer.

The initFromAvgQLen method is a wrapper for initFromMarginal to initialize the system as
close as possible to the average steady-state distribution of the network. Since averages are typically not
integer-valued, this function rounds the average values to the nearest integer and adjusts the result to ensure
feasibility of the initialization.

58 CHAPTER 4. ANALYSIS METHODS

4.3.3 Initialization of transient classes

Because of class-switching, it is possible that a class r with a non-empty population at time t = 0 becomes
empty at some position time t′ > t without ever being visited again by any job. LINE allows users to place
jobs in transient classes and therefore it will not trigger an error in the presence of this situation. If a user
wishes to prohibit the use of a class at a station, it is sufficient to specify that the corresponding service
process uses the Disabled distribution.

Certain solvers may incur problems in identifying that a class is transient and in setting to zero its steady-
state measures. For example, the JMT solver uses an heuristic whereby a class is considered transient if it
has fewer samples than jobs initially placed in the corresponding chain the class belongs to. For such classes,
JMT will set the values of steady-state performance indexes to zero.

4.3.4 State space generation

As discussed in Example 3, the state space of a model can be obtained by either invoking model.getStateSpace()
or solver.getStateSpace() on an instant of the CTMC solver, where the latter returns the state space
cached during the solution of the CTMC.

LINE supports two state space generation method, which is configurable using the option options.config.state space gen
of the CTMC solver. Details may be found in Table 5.2.

4.4 Transient analysis

So far, we have seen how to compute steady-state average performance indexes, which are given by

E[n] = lim
t→+∞

E[n(t)]

where n(t) is an arbitrary performance index, e.g., the queue-length of a given class at time t.
We now consider instead the computation of the quantity E[n(t)|s0], which is the transient average

of the performance index, conditional on a given initial system state s0. Compared to n(t), this quantity
averages the system state at time t across all possible evolutions of the system from state s0 during the t
time units, weighted by their probability. In other words, we observe all possible stochastic evolutions of
the system from state s0 for t time units, recording the final values of n(t) in each trajectory, and finally
average the recorded values at time t to obtain E[n(t)|s0].

4.4.1 Computing transient averages

The computation of transient metrics proceeds similarly to the steady-state case. We first obtain the handles
for transient averages:

TODO: under development

4.5. SAMPLE PATH ANALYSIS 59

After solving the model, we will be able to retrieve both steady-state and transient averages as follows

TODO: under development

The transient average queue-length at node i for class r is stored within QNt in row i and column r.
Note that the above code specifies a maximum time t for the output time series. This can be done using

the timespan solver option. This applies also to average metrics. In the following example, the first model
is solved at steady-state, while the second model reports averages at time t = 1 after initialization

TODO: under development

4.4.2 First passage times into stations

When the model is in a transient, the average state seen upon arrival to a station changes over time. That is,
in a transient, successive visits by a job may experience different response time distributions. The function
getTranCdfRespT, implemented by SolverJMT offers the possibility to obtain this distribution given
the initial state specified for the model. As time passes, this distribution will converge to the steady-state
one computed by solvers equipped with the function getCdfRespT.

However, in some cases one prefers to replace the notion of response time distribution in transient by
the one of first passage time, i.e., the distribution of the time to complete the first visit to the station under
consideration. The function getTranCdfFirstPassT provides this distribution, assuming as initial
state the one specified for the model, e.g., using setState or initDefault. This function is available
only in SolverFluid and has a similar syntax as getCdfRespT.

4.5 Sample path analysis

With LINE is also possible to obtain a particular sample path from the stochastic process underlying the
queueing network. The following functions are available for this purpose:

• sample: returns a data structure including the time-varying state of a given stateful node, labelled
with information about the events that changed the node state.

• sampleAggr: returns a data structure similar to the one provided by sample, but where the state
is aggregate to count the number of jobs in each class at the node.

• sampleSys: similar to the sample function, but returns the state of every stateful node in the
model.

• sampleSysAggr: similar to the sampleAggr function, but returns the aggragted state of every
stateful node in the model.

60 CHAPTER 4. ANALYSIS METHODS

It is worth noting that the JMT solver only supports sampleAggr since the simulator does not offer a
simple way to extra detailed data such as phase change information in the service process. This information
is instead available with the SSA solver.

For example, the following command extract a sample path consisting of 10 samples for a APH(2)/M/1
queue:

TODO: under development

In the example, TODO refers to the time since initialization at which the node 2 (here the APH(2)/M/1
queueing station) enters the state shown in the second column.

If we repeat the same experiment with the SSA solver and using the sampleSys function, we now
have the full state space of the model, including both the source and the queueing station:

TODO: under development

4.6 Sensitivity analysis and numerical optimization

Frequently, performance and reliability analysis requires to change one or more model parameters to see
the sensitivity of the results or to optimize some goal function. In order to do this efficiently, we have
discussed before the internal representation of the Network objects used within the LINE solvers. By
applying changes directly to this internal representation it is possible to considerably speed-up the sequential
evaluation of models as discussed next.

4.6.1 Fast parameter update

Successive invocations of getStruct() will return a cached copy of the NetworkStruct represen-
tation, unless the user has called model.refreshStruct() or model.reset() in-between the in-
vocations. The refreshStruct function regenerates the internal representation, while reset destroys
it, together with all other representations and cached results stored in the Network object. In the case of
reset, the internal data structure will be regenerated at the next refreshStruct() or getStruct()
call.

The performance cost of updating the representation can be significant, as some of the structure array
field require a dedicated algorithm to compute. For example, finding the chains in the model requires an
analysis of the weakly connected components of the network routing matrix. For this reason, the Network
class provides several functions to selectively refresh only part of the NetworkStruct representation,
once the modification has been applied to the objects (e.g., stations, classes, ...) used to define the network.
These functions are as follows:

• refreshArrival: this function should be called after updating the inter-arrival distribution at a
Source.

4.6. SENSITIVITY ANALYSIS AND NUMERICAL OPTIMIZATION 61

• refreshCapacity: this function should be called after changing buffer capacities, as it updates
the capacity and classcapacity fields.

• refreshChains: this function should be used after changing the routing topology, as it refreshes
the rt, chains, nchains, nchainjobs, and visits fields.

• refreshPriorities: this function updates class priorities in the classprio field.

• refreshScheduling: updates the sched, schedid, and schedparam fields.

• refreshProcesses: updates the mu, phi, phases, rates and scv fields.

For example, suppose we wish to update the service time distribution for class-1 at node 1 to be exponential
with unit rate. This can be done efficiently as follows:

TODO: under development

4.6.2 Refreshing a network topology with non-probabilistic routing

The resetNetwork function should be used before changing a network topology with non-probabilistic
routing. It will destroy by default all class switching nodes. This can be avoided if the function is called as,
e.g., model.resetNetwork(False). The default behavior is though shown in the next example

TODO: under development

As shown, resetNetwork updates the station indexes and the revised list of nodes that compose the
topology is obtained as a return parameter. To avoid stations to change index, one may simply create
ClassSwitch nodes as last before solving the model. This node list can be employed as usual to
reinstantiate new stations or ClassSwitch nodes. The addLink, setRouting, and possibly the
setProbRouting functions will also need to be re-applied as described in the previous sections.

4.6.3 Saving a network object before a change

The Network object, and its inner objects that describe the network elements, are always passed by refer-
ence. The copy function should be used to clone LINE objects, for example before modifying a parameter
for a sensitivity analysis. This function recursively clones all objects in the model, therefore creating an
independent copy of the network. For example, consider the following code

TODO: under development

Using the getName function it is then possible to verify that model has now name myModel1, since
the first assignment was by reference. Conversely, modelByCopy.setName did not affect the original
model since this is a clone of the original network.

Chapter 5

Network solvers

5.1 Overview

Solvers analyze objects of class Network to return average, transient, distributions, or state probability
metrics. A solver can implement one or more methods, which although featuring a similar overall solution
strategy, they can differ significantly from each other in the way this strategy is actually implemented and
on whether the final solution is exact or approximate.

A ‘method’ flag can be passed upon invoking a solver to specify the solution method that should be
used. For example, the following invocations are identical:

TODO: under development

In what follows, we describe the general characteristics and supported model features for each solver
available in LINE and their methods.

Available solvers

The following Network solvers are available within LINE 2.0.x:

• LINE: This solver uses an algorithm to select the best solution method for the model under considera-
tion, among those offered by the other solvers. Analytical solvers are always preferred to simulation-
based solvers. This solver is implemented by the LINE class.

• CTMC: This is a solver that returns the exact values of the performance metrics by explicit generation
of the continuous-time Markov chain (CTMC) underpinning the model. As the CTMC typically incurs
state-space explosion, this solver can successfully analyze only small models. The CTMC solver is the
only method offered within LINE that can return an exact solution on all Markovian models, all other
solvers are either approximate or are simulators. This solver is implemented by the SolverCTMC
class.

62

5.2. SOLUTION METHODS 63

• FLUID: This solver analyzes the model by means of an approximate fluid model, leveraging a rep-
resentation of the queueing network as a system of ordinary differential equations (ODEs). The fluid
model is approximate, but if the servers are all PS or INF, it can be shown to become exact in the limit
where the number of users and the number of servers in each node grow to infinity [37]. This solver
is implemented by the SolverFluid class.

• JMT: This is a solver that uses a model-to-model transformation to export the LINE representation into
a JMT simulation (JSIM) or analytical (JMVA) models [2]. The JSIM simulation solver can analyze
also non-Markovian models, in particular those involving deterministic or Pareto distributions, or
empirical traces. This solver is implemented by the SolverJMT class.

• MAM: This is a matrix-analytic method solver, which relies on quasi-birth death (QBD) processes to
analyze open queueing systems. This solver is implemented by the SolverMAM class.

• MVA: This is a solver based on approximate and exact mean-value analysis. This solver is typically the
fastest and offers very good accuracy in a number of situations, in particular models where stations
have a single-server. This solver is implemented by the SolverMVA class.

• NC: This solver uses a combination of methods based on the normalizing constant of state probability
to solve a model. The underpinning algorithm are particularly useful to compute marginal and joint
state probabilities in queueing network models. This solver is implemented by the SolverNC class.

• SSA: This is a discrete-event simulator based on the CTMC representation of the model. Contrary to
the JMT simulator, which has online estimators for all the performance metrics, SSA estimates only
the probability distribution of the system states, indirectly deriving the metrics after the simulation is
completed. Moreover, the SSA execution can more efficiently parallelized on multi-core machines.
Moreover, it is possible to retrieve the evolution over time of each node state, including quantities
that are not loggable in JMT, e.g., the active phase of a service or arrival distribution. This solver is
implemented by the SolverSSA class.

5.2 Solution methods

We now describe the solution methods available within the Network solvers. Table 5.1 provides a global
summary. Some of the listed methods (e.g., mg1) are not associated to a specific solver, as they do not fall
in one of the reference formalisms. A solver that runs these methods can be instantiated as follows, e.g.:

TODO: under development

Note that the LINE.load notation can also be used to instantiate a custom solver pre-configured with the
specified method. For example

TODO: under development

64 CHAPTER 5. NETWORK SOLVERS

runs the CTMC solver with default options. Solver-specific methods can be specified by appending their
name to the method option, e.g. this command creates the CTMC solver with gpu method enabled:

TODO: under development

Table 5.1: Solution methods for Network solvers.

Solver Method Description Refs.
CTMC default Solution based on global balance [5, §2.1.2]
CTMC gpu Solution based on global balance run on GPU –
FLUID default mean field fluid ODEs [38, 44]
FLUID matrix Alias for the default method [38, 44]
FLUID closing Fluid with closing method for open classes [5][p. 507]
JMT default Alias for the jsim method –
JMT jmva Alias for the jmva.mva method –
JMT jmva.mva Exact MVA in JMVA [41]
JMT jmva.recal Exact RECAL algorithm in JMVA [19]
JMT jmva.comom Exact CoMoM algorithm in JMVA [8]
JMT jmva.amva Approximate MVA, alias for jmva.bs. –
JMT jmva.aql AQL algorithm in JMVA [51]
JMT jmva.bs Bard-Schweitzer algorithm in JMVA [5, §9.1.1]
JMT jmva.chow Chow algorithm in JMVA [17]
JMT jmva.dmlin De Souza-Muntz Linearizer in JMVA [20]
JMT jmva.lin Linearizer algorithm in JMVA [16]
JMT jmva.ls Logistic sampling in JMVA [10]
JMT jsim Exact discrete-event simulation in JSIM [2]
MAM default Matrix-analytic solution of structured QBDs [31]
MAM dec.source Decomposition with arrivals as from the source –
MAM dec.poisson Decomposition based on Poisson arrival flows –
MVA default Approximate MVA, same as qd option –
MVA amva Approximate MVA, same as qd option –
MVA aql Aggregate queue length approximate MVA [51]
MVA bs Bard-Schweitzer approximate MVA [5, §9.1.1]
MVA fli Wang-Sevcik fraction line approximate MVA [48]
MVA lin Linearizer approximate MVA [16]
MVA qd Queue-dependent approximate MVA [14]

Continued on next page

5.2. SOLUTION METHODS 65

Table 5.1 – Solution methods for Network solvers. Continued from previous page
Solver Method Description Refs.
MVA qdaql Queue-dependent Aggregate queue length

(AQL) approximate MVA
–

MVA qdlin Queue-dependent Linearizer approximate MVA –
MVA qli Wang-Sevcik queue line approximate MVA [48]
MVA exact Exact solution, method depends on model –
MVA mva Alias for the mva.amva method [41], [7]
MVA aba.upper Asymptotic bound analysis (upper bounds) [5, §9.4]
MVA aba.lower Asymptotic bound analysis (lower bounds) [5, §9.4]
MVA bjb.upper Balanced job bounds (upper bounds) [13, Table 3]
MVA bjb.lower Balanced job bounds (lower bounds) [13, Table 3]
MVA gb.upper Geometric square-root bounds (upper bounds) [13]
MVA gb.lower Geometric square-root bounds (lower bounds) [13]
MVA pb.upper Proportional bounds (upper bounds) [13, Table3]
MVA pb.lower Proportional bounds (lower bounds) [13, Table3]
MVA sb.upper Simple bounds (upper bounds, Thm. 3.2, n = 3) [28, Table3]
MVA sb.lower Simple bounds (lower bounds, Eq. 1.6) [28, Table3]
MVA gig1.allen Allen-Cunneen formula - GI/G/1 [5, §6.3.4]
MVA gig1.heyman Heyman formula - GI/G/1 –
MVA gig1.kingman Kingman upper bound- GI/G/1 [5, §6.3.6]
MVA gig1.klb Kramer-Langenbach-Belz formula - GI/G/1 [5, §6.3.4]
MVA gig1.kobayashi Kobayashi diffusion approximation - GI/G/1 [5, §10.1.1]
MVA gig1.marchal Marchal formula - GI/G/1 [5, §10.1.3]
MVA gigk Kingman approximation - GI/G/k
MVA mg1 Pollaczek–Khinchine formula - M/G/1 [5, §3.3.1]
MVA mm1 Exact formula - M/M/1 [5, §6.2.1]
MVA mmk Exact formula - M/M/k (Erlang-C)
NC default Alias for the adaptive method –
NC adaptive Automated choice of deterministic method –
NC exact Automated choice of exact solution method. –
NC brute Brute force summation over all the state space –
NC ca Multiclass convolution algorithm (exact) –
NC comom Class-oriented method of moments (exact) [8]
NC cub Grundmann-Moeller cubature rules [10]
NC mva Product of throughputs on MVA lattice (exact) [40, Eq. (47)]
NC imci Improved Monte carlo integration sampler [49]
NC kt Knessl-Tier asymptotic expansion [32]
NC le Logistic asymptotic expansion [10]

Continued on next page

66 CHAPTER 5. NETWORK SOLVERS

Table 5.1 – Solution methods for Network solvers. Continued from previous page
Solver Method Description Refs.
NC ls Logistic sampling [10]
NC mom Method of moments (exact) [9]
NC mmint2 McKenna-Mitra integral (2-station models only) [36]
NC nr.logit Norlund-Rice integral with logit transformation [12]
NC nr.probit Norlund-Rice integral with probit transformation [12]
NC pana Panacea asymptotic expansion [36], [42]
NC propfair Product of proportionally fair throughputs [45]
NC rd Reduction heuristic [12]
NC rgf Recursive generating function [29]
NC sampling Automated choice of sampling method –
SSA default Alias for the serial method –
SSA serial CTMC stochastic simulation on a single core [27]
SSA serial.hash serial with state hashing (slower, less mem-

ory)
–

SSA para Parallel simulations (independent replicas) –
SSA para.hash para with state hashing (slower, less memory) –

5.2.1 LINE

The LINE class, also callable with the alias SolverAuto, provides interfaces to the core solution functions
(e.g., getAvg, ...) that dynamically bind to one of the other solvers implemented in LINE (CTMC, NC, ...).
It is often difficult to identify the best solver without some performance results on the model, for example
to determine if it operates in light, moderate, or heavy-load regime.

Therefore, heuristics are used to identify a solver based on structural properties of the model, such as
based on the scheduling strategies used at the stations as well as the number of jobs, chains, and classes.
Such heuristics, though, are independent of the core function called, thus it is possible that the optimal solver
does not support the specific function called (e.g., getTranAvg). In such cases the LINE solver determines
what other solvers would be feasible and prioritizes them in execution time order, with the fastest one on
average having the higher priority. Eventually, the solver will be always able to identify a solution strategy,
through at least simulation-based solvers such as JMT or SSA.

5.2.2 CTMC

The SolverCTMC class solves the model by first generating the infinitesimal generator of the Network
and then calling an appropriate solver. Steady-state analysis is carried out by solving the global balance

5.2. SOLUTION METHODS 67

equations defined by the infinitesimal generator. If the keep option is set to true, the solver will save the
infinitesimal generator in a temporary file and its location will be shown to the user.

Transient analysis is carried out by numerically solving Kolmogorov’s forward equations using MAT-
LAB’s ODE solvers. The range of integration is controlled by the timespan option. The ODE solver
choice is the same as for SolverFluid.

The CTMC solver heuristically limits the solution to models with no more than 6000 states. The force
option needs to be set to true to bypass this control. In models with infinite states, such as networks with
open classes, the cutoff option should be used to reduce the CTMC to a finite process. If specified as a
scalar value, cutoff is the maximum number of jobs that a class can place at an arbitrary station. More
generally, a matrix assignment of cutoff indicates to LINE that cutoff has in row i and column r the
maximum number of jobs of class r that can be placed at station i.

Details on the additional configuration options of the CTMC solver is given in the next table.

Table 5.2: SolverCTMC configuration options
Option Value Description
options.config.hide immediate boolean If true, immediate transitions are hidden from the CTMC.
options.config.state space gen reachable Direct state space enumeration from initial state.
options.config.state space gen full Direct state space enumeration from all possible initial states.

5.2.3 FLUID

This solver is based on the system of fluid ordinary differential equations for INF-PS queueing networks
presented in [38]. The latter is based on Kurtz’s mean-field approximation theory. The fluid ODEs are nor-
mally solved with a Java port of the LSODA algorithm for stiff and non-stiff ordinary differential equations.
More details about the port are available at: https://github.com/imperial-qore/lsoda-java.

ODE variables corresponding to an infinite number of jobs, as in the job pool of a source station, or to
jobs in a disabled class are not included in the solution vector. These rules apply also to the options.init sol
vector.

The solution of models with FCFS stations maps these stations into corresponding PS stations where
the service rates across classes are set identical to each other with a service distribution given by a mixture
of the service processes of the service classes. The mixture weights are determined iteratively by solving
a sequence of PS models until convergence. Upon initializing FCFS queues, jobs in the buffer are all
initialized in the first phase of the service.

5.2.4 JMT

The class is a wrapper for the JMT and consists of a model-to-model transformation from the Network
data structure into the JMT’s input XML formats (either .jsimg or .jmva) and a corresponding parser
for JMT’s results. Upon first invocation, the JMT JAR archive will be searched in the MATLAB path and if
unavailable automatically downloaded.

https://github.com/imperial-qore/lsoda-java

68 CHAPTER 5. NETWORK SOLVERS

This solver offers two main methods. The default method is the JSIM solver (’jsim’ method), which
runs JMT’s discrete-event simulator. The alternative method is the JMVA analytical solver (’jmva’
method), which is applicable only to queueing network models that admit a product-form solution. This
can be verified calling model.hasProductFormSolution prior to running the JMVA solver.

In the transformation to JSIM, artificial nodes will be automatically added to the routing table to repre-
sent class-switching nodes used in the simulator to specify the switching rules. One such class-switching
node is defined for every ordered pair of stations (i, j) such that jobs change class in transit from i to j.

5.2.5 MAM

This is a basic solver for some Markovian open queueing systems that can be analyzed using matrix analytic
methods. The core solver is based on the BU tools library for matrix-analytic methods [31]. The solution
of open queueuing networks is based on traffic decomposition methods that compute the arrival process at
each queue resulting from the superposition of multiple source streams.

5.2.6 MVA

The solver offers approximate mean value analysis (AMVA) (options.method=’default’), but also
exact MVA algorithms (options.method=’exact’). The default AMVA solver is based on Lin-
earizer [16], unless there are two or less jobs in total within closed classes, in which case the solver runs the
Bard-Schweitzer algorithm [45]. Extended queueing models are handled as follows:

• Non-exponential service times in FCFS nodes are handled only in the single-server case via the
method selected in the options.config.highvar setting. By default high variance is ignored,
as the FCFS solver tends to produce good result in closed models also without specialized correc-
tions. It is alternatively possible to handle high variance either using the Diffusion-M/G/k interpo-
lation from [11], casted with weights ai = bi = 10−8, or using the high-variance MVA (HV-MVA)
corrections proposed in [6, 39]. The multi-server extension is ongoing; we point to the NC solver for
a version already available.

• Multi-servers are dealt with using the methods listed in Table 5.3 for the options.config.multiserver
option. These are coupled with a modification of the Rolia-Sevcik correction [43], where in light-load
the Rolia-Sevcik correction is treated as if there was a single server.

• Non-preemptive are dealt with using the methods listed in Table 5.3 for the configuration option
options.config.np priority. The solver feature in particular AMVA-CL and the shadow
server methods [22].

• DPS queues are analyzed with a standard method similar to the biased processor sharing approxima-
tion reported in [34, §11.4]. Here, an arriving job of class r sees a queue-length in class s ̸= r scaled
by the correction factor ws/wr, where ws is the weight of class s.

5.2. SOLUTION METHODS 69

• Limited load-dependence (intended here as other than multi-server) and class-dependence are handled
through the correction factors proposed in [14]. If a station is both limited load-dependent and multi-
server, then if the softmin method is chosen the solver will suitably combine the softmin term and
the limited load-dependent correcting factors. Moreover, iterative queue-length corrections such as
those applied by the AQL and Linearizer methods are also applied to these terms.

• Fork-join networks are assumed to feature a direct acyclic graph (DAG) in-between forks and joins.
They are analyzed by iteratively transforming the sibling tasks into jobs belonging to independent
classes, using the algorithm specified in options.config.fork join. If a fork has fan out
f (i.e., the fork out-degree), in the implementation of the Heidelberger-Trivedi [30] method, one
artificial open class is created for each of f − 1 sibling task, while also retaining a task in the original
class. The residence times along a branch are then treated as exponential random variables and their
maximum, corresponding to the response time of the fork-join section, is computed using specialized
results for this distribution. LINE supports this method, but uses as a default a custom variant whereby
in which the original and artificial classes can take with probability 1/f any of the outgoing branches.
While the latter can result in states that do not exist in the original model, since two sibling tasks may
take the same branch, it is correct in expectation and it does not treat differently the artificial classes
than the original class, which can be beneficial when the original class is closed and thus differs
significantly from an open artificial class.

Solver-specific configuration options are reported in Table 5.3.

Table 5.3: SolverMVA configuration options
Option Value Description
options.config.multiserver default Equals softmin at PS queues and seidmann at FCFS queues.
options.config.multiserver seidmann Seidmann’s decomposition [46].
options.config.multiserver softmin QD-AMVA’s softmin approximation [14].
options.config.np priority default Non-preemptive priority handling. Equals cl.
options.config.np priority cl Chandy-Lakshmi [22].
options.config.np priority shadow Sevcik’s shadow server [47].
options.config.highvar default Ignored - no correction applied.
options.config.highvar interp Diffusion-M/G/k interpolation from [11].
options.config.highvar hvmva High-variance MVA as in [6], extended to multiclass as [23, Eq. 3.21].
options.config.fork join default Equals mmt.
options.config.fork join mmt LINE custom fork-join transformation [21]
options.config.fork join ht Heidelberger-Trivedi [30]

5.2.7 NC

The SolverNC class implements a family of solution algorithms based on the normalizing constant of
state probability of product-form queueing networks. Contrary to the other solvers, this method typicallly

70 CHAPTER 5. NETWORK SOLVERS

maps the problem to certain multidimensional integrals, allowing the use of numerical methods such as
MonteCarlo sampling and asymptotic expansions in their approximation.

5.2.8 SSA

The SolverSSA class is a basic stochastic simulator for continuous-time Markov chains. It reuses some
of the methods that underpin SolverCTMC to generate the network state space and subsequently simulates
the state dynamics by probabilistically choosing one among the possible events that can incur in the system,
according to the state spaces of each of node in the network. For efficiency reasons, states are tracked at the
level of individual stations, and hashed. The state space is not generated upfront, but rather stored during the
simulation, starting from the initial state. If the initialization of a station generates multiple possible initial
states, SSA initializes the model using the first state found. The list of initial states for each station can be
obtained using the getInitState functions of the Network class.

The SSA solver offers two methods: ’serial’ and ’para’ (default). The serial methods run on a
single core, while the parallel methods run on multicore

5.3 Supported language features and options

5.3.1 Solver features

Once a model is specified, it is possible to use the getUsedLangFeatures function to obtain a list of
the features of a model. For example, the following conditional statement checks if the model contains a
FCFS node

TODO: under development

Every LINE solver implements the support to check if it supports all language features used in a certain
model

TODO: under development

5.3.2 Class functions

The table below lists the steady-state and transient analysis functions implemented by the Network solvers.
Since the features of the LINE solver are the union of the features of the other solvers, in what follows it will
be omitted from the description.

The functions listed above with the Table suffix (e.g., getAvgTable) provide results in tabular
format corresponding to the corresponding core function (e.g., getAvg). The features of the core functions
are as follows:

5.3. SUPPORTED LANGUAGE FEATURES AND OPTIONS 71

Table 5.4: Solver support for average performance metrics
Network Solver

Function Regime CTMC FLUID JMT MAM MVA NC SSA

getAvg Steady-state
getAvgTable Steady-state
getAvgChain Steady-state
getAvgChainTable Steady-state
getAvgNode Steady-state
getAvgNodeTable Steady-state
getAvgSys Steady-state
getAvgSysTable Steady-state
getAvgArvR Steady-state
getAvgArvRChain Steady-state
getAvgQLen Steady-state
getAvgQLenChain Steady-state
getAvgRespT Steady-state
getAvgRespTChain Steady-state
getAvgSysRespT Steady-state
getAvgTput Steady-state
getAvgTputChain Steady-state
getAvgSysTput Steady-state
getAvgUtil Steady-state
getAvgUtilChain Steady-state
getTranAvg Transient

• getAvg: returns the mean queue-length, utilization, mean response time (for one visit), and through-
put for each station and class.

• getAvgChain: returns the mean queue-length, utilization, mean response time (for one visit), and
throughput for every station and chain.

• getAvgSys: returns the system response time and system throughput, as seen as the reference node,
by chain.

• getCdfRespT: returns the distribution of response times (for one visit) for the stations at steady-
state.

• getAvgNode: behaves similarly to getAvg, but returns performance metrics for each node and
class. For example, throughputs at the sinks can be obtained with this method.

72 CHAPTER 5. NETWORK SOLVERS

Table 5.5: Solver support for advanced metrics
Network Solver

Function Regime CTMC FLUID JMT MAM MVA NC SSA

getCdfRespT Steady-state
getProb Steady-state
getProbAggr Steady-state
getProbSys Steady-state
getProbSysAggr Steady-state
getProbNormConstAggr Steady-state
getTranCdfPassT Transient
getTranCdfRespT Transient
getTranProb Transient
getTranProbAggr Transient
getTranProbSys Transient
getTranProbSysAggr Transient
sample Transient
sampleAggr Transient
sampleSys Transient
sampleSysAggr Transient

• getProb: returns state probabilities at equilibrium at a given station.

• getProbAggr: returns marginal state probabilities for jobs of different classes at a given station.

• getProbSys: returns joint probabilities for a given system state.

• getProbSysAggr: returns joint probabilities for jobs of different classes at all stations.

• getProbNormConstAggr: returns the normalizing constant of the state probabilities for the model.

• getTranAvg: returns transient mean queue length, utilization and throughput for every station and
chain from a given initial state.

• getTranCdfPassT: returns the distribution of first passage times in transient regime.

• getTranCdfRespT: returns the distribution of response times in transient regime.

• sample: returns the transient marginal state for a station from a given initial state.

• sampleAggr: returns the transient marginal state for jobs of different classes at a given station from
a given initial state.

5.3. SUPPORTED LANGUAGE FEATURES AND OPTIONS 73

• sampleSys: returns the transient marginal system state for a station from a given initial state.

• sampleSysAggr: returns the transient marginal system state for jobs of different classes at a given
station from a given initial state.

5.3.3 Node types

The table below shows the node types supported by the different solvers. It should be noted that the FLUID
solver is capable of handling Sink and Source nodes, but due to low accuracy when run on open models
this feature is disabled in the current release.

Table 5.6: Solver support for Network nodes
Network Solver

Strategy CTMC FLUID JMT MAM MVA NC SSA

Cache
ClassSwitch

Delay
Fork
Join

Queue
Sink

Source

5.3.4 Scheduling strategies

The table below shows the supported scheduling strategies within LINE queueing stations. Each strategy
belongs to a policy class:

• preemptive resume (SchedStrategyType.PR)

• non-preemptive (SchedStrategyType.NP)

• non-preemptive priority (SchedStrategyType.NPPrio).

The table primarily refeers to invocation of the getAvg methods. Specialized methods, such as transient or
response time distribution analysis, may be available only for a subset of the scheduling strategies supported
by a solver.

74 CHAPTER 5. NETWORK SOLVERS

Table 5.7: Solver support for scheduling strategies
Network Solver

Strategy Class CTMC FLUID JMT MAM MVA NC SSA

FCFS NP
INF NP

SIRO NP
SEPT NP
SJF NP

HOL NPPrio
PS PR

DPS PR
GPS PR

5.3.5 Statistical distributions

The table below summarizes the current level of support for arrival and service distributions within each
solver. Replayer represents an empirical trace read from a file, which will be either replayed as-is by the
JMT solver, or fitted automatically to a Cox by the other solvers. Note that JMT requires that the last row
of the trace must be a number, not an empty row.

Table 5.8: Solver support for statistical distributions
Network Solver

Distribution CTMC FLUID JMT MAM MVA NC SSA

APH
Coxian

Exp
Erlang

HyperExp
Disabled

Det
Gamma

Lognormal
Pareto

Replayer
Uniform
Weibull

5.3. SUPPORTED LANGUAGE FEATURES AND OPTIONS 75

5.3.6 Solver options

Solver options are encoded in LINE in a structure array that is internally passed to the solution algorithms.
This can be specified as an argument to the constructor of the solver. For example, the following two

constructor invocations are identical

TODO: under development

Modifiers to the default options can either be specified directly in the options data structure, or alterna-
tively be specified as argument pairs to the constructor, i.e., the following two invocations are equivalent

TODO: under development

Available solver options are as follows:

• cache (logical) if set to true the solver after the first invocation will return the same result upon
subsequent calls, without solving again the model. This option is true by default. Caching can be
bypassed using the refresh methods (see Section 4.6).

• config (struct) this is data structure to pass solver-specific configuration options to customize
the execution of particular methods.

• cutoff (integer ≥ 1) requires to ignore states where stations have more than the specified num-
ber of jobs. This is a mandatory option to analyze open classes using the CTMC solver.

• force (logical) requires the solver to proceed with analyzing the model. This bypasses checks
and therefore can result in the solver either failing or requiring an excessive amount of resources from
the system.

• iter max (integer ≥ 1) controls the maximum number of iterations that a solver can use, where
applicable. If iter max= n, this option forces the FLUID solver to compute the ODEs over the
timespan t ∈ [0, 10n/µmin], where µmin is the slowest service rate in the model. For the MVA solver
this option instead regulates the number of successive substitutions allowed in the fixed-point iteration.

• iter tol (double) controls the numerical tolerance used to convergence of iterative methods. In
the FLUID solver this option regulates both the absolute and relative tolerance of the ODE solver.

• init sol (solver dependent) re-initializes iterative solvers with the given configuration of
the solution variables. In the case of MVA, this is a matrix where element (i, j) is the mean queue-
length at station i in class j. In the case of FLUID, this is a model-dependent vector with the values
of all the variables used within the ODE system that underpins the fluid approximation.

• keep (logical) determines if the model-to-model transformations store on file their intermediate
outputs. In particular, if verbose≥ 1 then the location of the .jsimg models sent to JMT will be
printed on screen.

76 CHAPTER 5. NETWORK SOLVERS

• method (string) configures the internal algorithm used to solve the model.

• samples (integer ≥ 1) controls the number of samples collected for each performance index by
simulation-based solvers. JMT requires a minimum number of samples of 5 · 103 samples.

• seed (integer≥ 1) controls the seed used by the pseudo-random number generators. For example,
simulation-based solvers will give identical results across invocations only if called with the same
seed.

• stiff (logical) requires the solver to use a stiff ODE solver.

• timestamp (real interval) requires the transient solver to produce a solution in the specified
temporal range. If the value is set to [Inf,Inf] the solver will only return a steady-state solution.
In the case of the FLUID solver and in simulation, [Inf,Inf] has the same computational cost of
[0,Inf] therefore the latter is used as default.

• tol default numerical tolerance for all uses other than the ones where iter tol is used.

• verbose controls the verbosity level of the solver. Supported levels are 0 for silent, 1 for standard
verbosity, 2 for debugging.

Table 5.9: Default values of the LINE solver options and their default assignments
Solver default

Option MVA CTMC FLUID JMT MAM NC SSA

cache true true true true true true true
config

cutoff (no default)
force false false false false false false false
keep false
init sol [] []

iter max 103 10

iter tol 10−6 10−4 10−4

method ’default’ ’default’ ’default’ ’default’ ’default’ ’default’ ’default’

lang ’matlab’ ’matlab’ ’matlab’ ’matlab’ ’matlab’ ’matlab’ ’matlab’

samples 104 104

seed rand rand rand rand rand rand rand
stiff true
timespan [Inf,Inf] [0,Inf] [0,Inf] [Inf,Inf] [0,Inf]

tol 10−4 10−4

verbose 1 1 1 1 1 1 1

5.4. SOLVER MAINTENANCE 77

5.4 Solver maintenance

The following best practices can be helpful in maintaining the LINE installation:

• To install a new release of JMT, it is necessary to delete (or overwrite) the JMT.jar file under the
’SolverJMT’ folder. This forces LINE to download the latest version of the JMT executable.

• To remove temporary by-products of the JMT solver it is recommended to periodically run the
jmtCleanTempDir script. This is more important when using the ’keep’ option, which stores
on disk the temporary .jsimg and .jsimw models sent to JMT.

Chapter 6

Layered network models

In this chapter, we present the definition of the LayeredNetwork class, which encodes the support in
LINE for a class of generalized layered stochastic networks. In their basic form, these models are called
layered queueing networks (LQNs) and differ from regular queueing networks as servers, in order to process
jobs, can issue synchronous and asynchronous calls among each others. We point to [24] and to the LQNS
user manual for an introduction [25]. Contrary to the original LQNs, layered networks in LINE can also
include non-queueing servers, such as caches, hence they may be conceptualized as more general layered
stochastic networks.

The topology of call dependencies in a layered network makes it possible to partition the model into
a set of layers, each consisting of a subset of the servers. Each of these layers is then solved in isolation,
updating with an iterative procedure its parameters and performance metrics until the layers solutions jointly
converge to a consistent solution.

6.1 Basics about layered networks

Layered network models describe a collection of resources called tasks, each representing for example a
software server, that run on resources called host processors. Classes of service exposed by a task are called
entries. Each entry is an endpoint at which a task can be invoked; for example, if a task represents a web
server then its web pages may be described as different entries.

A special task, called the reference task is used to represent a group of system users. In this case, the
host processor for a reference task can either be real, as in the case of users that are themselves software
systems, or fictitious, as in the case of human users.

Each entry can be specified by a workflow of operations called activities, typically organized as a di-
rected acyclic graph. The time demand that each activity places at the underpinning host processor is called
its host demand and it is a random variable with a user-specified distribution.

Activity graphs may include calls to entries exposed by other tasks. This is an abstraction of the calls that
distributed system components have among themselves. Calls can either be synchronous, asynchronous, or

78

6.2. LAYEREDNETWORK OBJECT DEFINITION 79

forwarding. At present, LINE supports only the first two kinds of activities. Synchronous calls are requests
that block the sender until a reply is received, while asynchronous calls are non-blocking and the sender
execution can continue after issuing the call. Calls can either be repeated either deterministic or stochastic,
meaning in the latter case that the number of calls issued is a random variable, e.g. geometrically distributed.

Contrary to ordinary layered queueing networks, a layered network in LINE can also feature cache tasks,
item entries, and cache-access precedence relations.

• Cache tasks have the basic properties of tasks, but add three specific properties for caching: the total
number of items, the cache capacity and the cache replacement policy. Cached items can be either
contents or services. Cache capacity indicates the storage constraints of the cache.

• An item-entry provides instead access to a group of entries of a cache, Item-entries have the basic
properties of entries, but add the property of the popularity of the items they give access to.

• A precedence relationship called cache-access is defined for the cache hit and miss activities under
each item-entry. That is, it is possible to proceed to a different activity depending on whether the
cache access produced a cache hit or cache miss. For example, a cache miss can produce a call to a
remote entry to retrieve the missing content.

Note that the above extensions are not queueing-based and this explains why these models are referred to
in LINE as layered networks and not as layered queueing networks. Similar to the latter, the analysis of a
layered networks uses a decomposition of the model into a set of submodels, each being a Network object,
which are then iterative analyzed using different solution methods.

6.2 LayeredNetwork object definition

6.2.1 Creating a layered network topology

A layered queueing network consists of four types of elements: processors, tasks, entries and activities. An
entry is a class of service specified through a finite sequence of activities, and hosted by a task running
on a (physical) processor. A task is typically a software queue that models access to the capacity of the
underpinning processor. Activities model either demands required at the underpinning processor, or calls to
entries exposed by some remote tasks.

In the LayeredNetwork class, the terms host and processor are entirely interchangeable.
To create our first layered network, we instantiate a new model as

TODO: under development

We now proceed to instantiate the static topology of processors, tasks and entries:

TODO: under development

80 CHAPTER 6. LAYERED NETWORK MODELS

An equivalent way to specify the above example is to use the Host class instead than the Processor
class, with identical parameters.

In the above code, the on method specifies the associations between the elements, e.g., task T1 runs on
processor P1, and accepts calls to entry E1. Furthermore, the multiplicity of T1 is 5, meaning that up to 5
calls can be simultaneously served by this element (i.e., 5 is the multiplicity of servers in the underpinning
queueing system for T1).

Both processors and tasks can be associated to the standard LINE scheduling strategies. For instance,
T2 will process incoming requests in parallel according as an infinite server node, since we selected the
SchedStrategy.INF scheduling policy. An exception is that SchedStrategy.REF should be used
to denote the reference task (e.g. a node representing the clients of the models), which has a similar meaning
to the reference node in the Network object.

6.2.2 Describing host demands of entries

The demands placed by an entry on the underpinning host (also called in layered queueing networks the
host demand) is described in terms of execution of one or more activities. Although in tools such as LQNS
activities can be associated to either entries or tasks, LINE supports only the more general of the two options,
i.e., the definition of activities at the level of tasks. In this case:

• Every task defines a collection of activities.

• Every entry needs to specify an initial activity where the execution of the entry starts (the activity
is said to be “bound to the entry”) and a replying activity, which upon completion terminates the
execution of the entry.

For example, in our running example, we may now associate an activity to each entry as follows:

TODO: under development

Here, A1 is a task activity for T1, acts as initial activity for E1, consumes an exponential distributed time on
the processor underpinning T1, and requires on average 3.5 synchronous calls to E2 to complete. Each call
to entry E2 is served by the activity A2, with a demand on the processor hosting T2 given by an exponential
distribution with rate λ = 2.0.

Activity graphs

Often, it is useful to structure the sequence of activities carried out by an entry in a graph. Activity graphs
can be characterized by precedence relationships of the following kinds:

• sequence: two activities are executed sequentially, one after each other. This is implemented through
the ActivityPrecedence.Serial construct.

• loop: an activity is repeated a number of times. This is implemented in ActivityPrecedence.Loop.

6.2. LAYEREDNETWORK OBJECT DEFINITION 81

• and-fork: a serial execution is forked into concurrent activities. This can be materialized using the
ActivityPrecedence.AndFork construct.

• or-fork: the server chooses probabilistically which activity to execute next among a set of alternatives.
This is implemented in ActivityPrecedence.OrFork.

• and-join: concurrent activities are joined into a single serial execution. This is implemented in
ActivityPrecedence.AndJoin.

• or-join: merge point for alternative activities that may execute in parallel after a or-fork. This is
implemented in ActivityPrecedence.OrFork.

• cache-access: split point for cache hit/cache miss results in an activity graph. This is implemented in
ActivityPrecedence.CacheAccess. For usage examples, see example cacheModel 3
and example cacheModel 4 in the examples/ folder.

A composite example showing fork/join precedences and loops is given in example layeredModel 7
in the examples/ folder.

For instance, we may replace in the running example the specification of the activities underpinning a
call to E2 as

TODO: under development

such that a call to E2 serially executes A20, A21, and A22 prior to replying. Here, A21 is chosen to be an
Erlang distribution with given mean (1.0) and number of phases (2).

6.2.3 Debugging and visualization

The structure of a LayeredNetwork object can be graphically visualized as follows

TODO: under development

An example of the result is shown in the next figure. The figure shows two processors (P1 and P2), two
tasks (T1 and T2), and three entries (E1, E2, and E3) with their associated activities. Both dependencies
and calls are both shown as directed arcs, with the edge weight on call arcs corresponding to the average
number of calls to the target entry. For example, A1 calls E3 on average 2.0 times. In this figure, by clicking
with the mouse on a node MATLAB will display, using a data tip, some relevant properties of the node such
as scheduling or multiplicity.

When invoked as

TODO: under development

the plot is also accompanied by a task graph that illustrates the client-server dependencies between the
layers.

82 CHAPTER 6. LAYERED NETWORK MODELS

Figure 6.1: LayeredNetwork.plot method

Lastly, the jsimgView and jsimwViewmethods can be used to visualize in JMT each layer. This can
be done by first calling the getLayers method to obtain a cell array consisting of the Network objects,
each one corresponding to a layer, and then invoking the jsimgView and jsimwView methods on the
desired layer. This is discussed in more details in the next section.

6.3 Internals

6.3.1 Representation of the model structure

It is possible to access the internal representation of a LayeredNetwork model in a similar way as for
Network objects, i.e.:

TODO: under development

The return lqn structure, of class LayeredNetworkStruct, contains all the information about the
specified model. It relies on relative and absolute indexing for the elements of the LayeredNetwork.

• A relative index is a number between 1 and the number of similar elements in the model, e.g., for a
model with 3 tasks, the relative index t of a task would be a number in [1, 3].

• An absolute index is a number between 1 and the total number of elements (of any kind, except calls)
in the model, e.g., for a model with 2 hosts, 3 tasks, 5 entries, and 8 activities, the total number of
elements is nidx= 18 and last activity a may have an absolute index aidx= 18 and a relative index
a= 8.

6.4. SOLVERS 83

• The difference between the relative and the absolute index of an element is referred to as shift, e.g., in
the previous example ashift= 18− 8 = 10.

• Absolute and relative indexing for calls and hosts are identical, call index cidx ranges in [1,ncalls]
and host index hidx ranges in [1,nhosts].

Using the above convention, the internal representation of the model is described in Table 6.3.1. As in the
examples above, relative and absolute indexes are differentiated by using the suffix idx in the latter (e.g., a
vs. aidx). This indexing style is used throughout the codebase as well.

6.3.2 Decomposition into layers

Layers are a form of decomposition where we model the performance of one or more servers. The activity
of clients not detailed in that layer is taken into account through an artificial delay station, placed in a closed
loop to the servers [43]. This artificial delay is used to model the inter-arrival time between calls issued by
that client.

The current version of LINE adopts SRVN-type layering [25], whereby a layer corresponds to one and
only one resource, either a processor or a task. The getLayers method returns a cell array consisting of
the Network objects corresponding to each layer

TODO: under development

The decomposition is performed through the LN solver described later.
Within each layer, classes are used to model the time a job spends in a given activity or call, with syn-

chronous calls being modeled by classed with label including an arrow, e.g., ’AS1=>E3’ is a closed class
used represent synchronous calls from activity AS1 to entry E3, whereas ’AS1->E3’ denotes an asyn-
chronous call. Artificial delays and reference nodes are modelled as a delay station named ’Clients’,
whereas the task or processor assigned to the layer is modelled as the other node in the layer.

6.4 Solvers

LINE offers two solvers for the solution of a LayeredNetwork model consisting in its own native solver
(LN) and a wrapper (LQNS) to the LQNS solver [25]. The latter requires a distribution of LQNS to be
available on the operating system command line.

The solution methods available for LayeredNetwork models are similar to those for Network ob-
jects. For example, the getAvgTable can be used to obtain a full set of mean performance indexes for
the model, e.g.,

TODO: under development

84 CHAPTER 6. LAYERED NETWORK MODELS

Table 6.1: LayeredNetworkStruct static properties
Field Type Description
nidx integer Total number of LayeredNetwork elements
nhosts integer Number of Hosts or Processor elements
ntasks integer Number of Tasks elements
nentries integer Number of Entry elements
nacts integer Number of Activity elements
ncalls integer Number of calls issued by Activity elements
hshift integer For host h, the value h+hshift returns its absolute index in 1...nidx

tshift integer For task t, the value t+tshift returns its absolute index in 1...nidx

eshift integer For task e, the value e+eshift returns its absolute index in 1...nidx

ashift integer For activity a, the value a+ashift returns its absolute index in 1...nidx

cshift integer For call c, the value c+cshift returns its absolute index in 1...ncalls

tasksof{hidx} array Array of absolute indexes for tasks on host with absolute index hidx
entriesof{tidx} array Array of absolute indexes for entries on task with absolute index tidx
actsof{tidx} array Array of absolute indexes for activities on task with absolute index tidx
callsof{aidx} array Array of absolute indexes for calls on activity with absolute index aidx
hostdem{idx} object Object for the host demand distribution for element idx
think{idx} object Object for the think time distribution for element idx
sched{idx} char SchedStrategy scheduling policy for a host or task with absolute index idx
schedid(idx) integer SchedStrategy scheduling policy id for a host or task with absolute index idx
names{idx} char Name of the element with absolute index idx
hashnames{idx} char Same as names{idx} with type prefix (“H:” for host, “R:” for reference task, “T:”

for task, “C:” for cache task, “E:” for entry, “I:” for item entry, “A:” for activity)
mult(idx) integer Multiplicity for a host or task with absolute index idx
repl(idx) integer Replication factor for a host or task with absolute index idx
type{idx} integer LayeredNetworkElement id for an element with absolute index idx
nitems(idx) integer Total number of items in CacheTask or ItemEntry idx
itemcap{idx}(l) integer CacheTask idx capacity for cache list l
replacement(tidx) integer ReplacementPolicy id for cache task with absolute index tidx
itemproc(idx) object DiscreteDistrib object for for the item popularity in ItemEntry idx

calltype(cidx) integer CallType id for call cidx
callpair(cidx, j) integer j = 1 is the activity aidx issuing call cidx, j = 2 is the entry eidx called by cidx
callproc(cidx) logical DiscreteDistrib object for the number of calls with absolute index cidx
callnames{cidx} char Automatically assigned name to call with absolute index cidx
callhashnames{cidx} char Same as callnames{cidx} but with type prefix for source and destination
actpretype(aidx) integer ActivityPrecedenceType id preceding the activity with absolute index aidx
actposttype(aidx) integer ActivityPrecedenceType id after the activity with absolute index aidx
graph(idxi, idxj) float ̸= 0 if idxi “runs on”, “calls” or “precedes” idxj . Values are by default 1.0 unless

they specify a mean number of calls, a probability, fork fan-out or join fan-in degrees
parent(idx) integer Return absolute index value of the parent node for the node whose absolute index

value is idx
replygraph(aidx, eidx) logical True if activity with absolute index aidx on entry eidx replies ending the entry call
taskgraph(tidxi, tidxj) logical True if host or task idxi is a caller of host or task idxj

iscache(tidx) logical True if task tidx is a CacheTask
iscaller(idxi, idxj) logical True if task or activity idxi calls task or entry idxj

issynccaller(idxi, idxj) logical True if task or activity idxi issues a synchronous call to task or entry idxj

isasynccaller(idxi, idxj) logical True if task or activity idxi issues an asynchronous call to task or entry idxj

isref(tidx) logical True if task tidx is a reference task

6.4. SOLVERS 85

Note that in the above table, some performance indexes are marked as NaN because they are not defined
in a layered queueing network. Further, compared to the getAvgTable method in Network objects,
LayeredNetwork do not have an explicit differentiation between stations and classes, since in a layer a
task may either act as a server station or a client class.

The main challenge in solving layered queueing networks through analytical methods is that the param-
eterization of the artificial delays depends on the steady-state performance of the other layers, thus causing
a cyclic dependence between input parameters and solutions across the layers. Depending on the solver in
use, such issue can be addressed in a different way, but in general a decomposition into layers will remain
parametric on a set of response times, throughputs and utilizations.

This issue can be resolved through solvers that, starting from an initial guess, cyclically analyze the
layers and update their artificial delays on the basis of the results of these analyses. Both LN and LQNS
implement this solution method. Normally, after a number of iterations the model converges to a steady-
state solution, where the parameterization of the artificial delays does not change after additional iterations.

6.4.1 LQNS

The LQNS wrapper operates by first transforming the specification into a valid LQNS XML file. Subse-
quently, LQNS calls the solver and parses the results from disks in order to present them to the user in the
appropriate LINE tables or vectors. The options.method can be used to configure the LQNS execution
as follows:

• options.method=’std’ or ’lqns’: LQNS analytical solver with default settings.

• options.method=’exact’: the solver will execute the standard LQNS analytical solver with
the exact MVA method.

• options.method=’srvn’: LQNS analytical solver with SRVN layering.

• options.method=’srvnexact’: the solver will execute the standard LQNS analytical solver
with SRVN layering and the exact MVA method.

• options.method=’lqsim’: LQSIM simulator, with simulation length specified via the samples
field (i.e., with parameter -A options.samples, 0.95).

Upon invocation, the lqns or lqsim commands will be searched for in the system path. If they are
unavailable, the termination of SolverLQNS will interrupt.

6.4.2 QNS

LINE also includes a dedicated wrapper Network solver for the qnsolver utility distributed within
LQNS, called SolverQNS. This allows users to evaluate product-form models using the MVA algorithms
implemented within LQNS. The available options specify the multiserver handling algorithm:

86 CHAPTER 6. LAYERED NETWORK MODELS

• options.method=’conway’: Conway’s multiserver approximation within the Linearizer algo-
rithm proposed in [18].

• options.method=’rolia’: Rolia’s multiserver in the Methods of Layers paper [43].

• options.method=’reiser’: load-dependent mean-value analysis as described originally by
Reiser-Lavenberg in [41].

• options.method=’zhou’: Zhou-Woodside’s multiserver approximation in [52].

6.4.3 LN

The native LN solver iteratively applies the layer updates until convergence of the steady-state measures.
Since updates are parametric on the solution of each layer, LN can apply any of the Network solvers
described in the solvers chapter to the analysis of individual layers, as illustrated in the following example
for the MVA solver

TODO: under development

Options parameters may also be omitted. The LN method converges when the maximum relative change of
mean response times across layers from the last iteration is less than options.iter tol.

Methods supported by the LN solver include:

• options.method=’default’: default recursive solution based on mean values

• options.method=’moment3’: solution by recursive 3-moment approximation of response time
distributions.

6.5 Model import and export

A LayeredNetwork can be easily read from, or written to, a XML file based on the LQNS meta-model
format1. The read operation can be done using a static method of the LayeredNetwork class, i.e.,

TODO: under development

Conversely, the write operation is invoked directly on the model object

TODO: under development

In both examples, filename is a string including both file name and its path.
Finally, we point out that it is possible to export a LQN in the legacy SRVN file format2 by means of the

writeSRVN(filename) function.
1https://raw.githubusercontent.com/layeredqueuing/V5/master/xml/lqn.xsd
2http://www.sce.carleton.ca/rads/lqns/lqn-documentation/format.pdf

https://raw.githubusercontent.com/layeredqueuing/V5/master/xml/lqn.xsd
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/format.pdf

Chapter 7

Random environments

Systems modeled with LINE can be described as operating in an environment with a state that affects the
way the system dynamics. To distinguish the states of the environment from the ones of the system within
it, we shall refer to the former as the environment stages. In particular, LINE 2.0.0 supports the definition of
a class of random environments subject to three assumptions:

• The stage of the environment evolves independently of the state of the system.

• The dynamics of the environment stage can be described by a continuous-time Markov chain.

• The topology of the system is independent of the environment stage.

The above definitions are in particular appropriate to describe systems specified by input parameters (e.g.,
service rates, scheduling weights, etc) that change with the environment stage. For example, an environment
with two stages, say normal load and peak load, may differ for the number of servers that are available in a
queueing station, i.e., the system controller may add more servers during peak load. Upon a stage change
in the environment, the model parameters will instantaneously change, and the system state reached during
the previous stage will be used to initialize the system in the new stage.

Although in a number of cases the system performance may be similar to a weighted combination of the
average performance in each stage, this is not true in general, especially if the system dynamic (i.e., the rate
at which jobs arrive and get served) and the environment dynamic (i.e., the rate at which the environment
changes active stage) have a similar magnitude [15].

7.1 Environment object definition

7.1.1 Specifying the environment

In LINE, an environment is internally described by a Markov renewal process (MRP) with transition times
belonging to the PhaseType class. A MRP is similar to a Markov chain, but state transitions are not

87

88 CHAPTER 7. RANDOM ENVIRONMENTS

restricted to be exponential. Although the time spent in each state of the MRP is not exponential, the MRP
with phase-type transitions can be easily transformed into an equivalent continuous-time Markov chain
(CTMC) to enable analysis, a task that LINE performs automatically.

To specify an environment, we first create an Env object with the environment name

TODO: under development

We then add two stages

TODO: under development

where the constructor specifies the stage name, an arbitrary string to classify the stage (here taken from a
taxonomy in the Semantics class), follows by a Network object describing the system model conditional
on the environment being in the corresponding stage.

We now describe that the transitions between stages are both exponential, with different rates

TODO: under development

We can also add a self-loop on the online stage as follows

TODO: under development

which would cause a race condition between two distributions in stage two: the exponential transition back
to the offline stage, and the Erlang-2 distributed transition with unit rate that remains in the online stage. The
underpinning CTMC will therefore consider the distribution of the minimum between the exponential and
the Erlang-2 distribution, in order to decide the next stage transition. State space explosion may occur in the
definition of an environment if the user specifies a large number of non-exponential transition. For example,
a race condition among n Erlang-2 distribution translates at the level of the CTMC into a state space with
2n states. In such situations, it is recommended to replace some of the distributions with exponential ones.

To summarize the properties of the environment defined above we may use the getStageTable
method

TODO: under development

In the table, the State column gives a numerical identifier for each stage, followed by its stage probability
at equilibrium, a Markovian representation of the time spent in it before a transition, and by a pointer to the
sub-model associated to that stage.

7.1.2 Specifying a reset policy

When the environment transitions, the default policy is that the associated model is re-initialized using the
marginal queue-length values observed at departure instants. This means in practice that jobs in execution
at a server are required all to restart execution at that server upon occurrence of a transition. This may not

7.2. SOLVERS 89

be possible in some models, for example when a station is removed from the model. In that case, one can
define a custom reset policy by instantiating transitions as, e.g.,

TODO: under development

7.1.3 Specifying system models for each stage

LINE places loose assumptions in the way the system should be described in each stage. It is just expected
that the user supplies a model object, either a Network or a LayeredNetwork, in each stage, and
that a transient analysis method is available in the chosen solver, a requirement fulfilled for example by
SolverFluid.

However, we note that the model definition can be somewhat simplified if the user describes the system
model in a separate MATLAB function, accepting the stage-specific parameters in input to the function.
This enables reuse of the system topology across stages, while creating independent model objects.

7.2 Solvers

The steady-state analysis of a system in a random environment is carried out in LINE using the blending
method [15], which is an iterative algorithm leveraging the transient solution of the model. In essence, the
model looks at the average state of the system at the instant of each stage transition, and upon restarting the
system in the new stage re-initializes it from this average value. This algorithm is implemented in LINE by
the SolverEnv class, which is described next.

7.2.1 ENV

The SolverEnv class applies the blending algorithm by iteratively carrying out a transient analysis of
each system model in each environment stage, and probabilistically weighting the solution to extract the
steady-state behavior of the system.

As in the transient analysis of Network objects, LINE does not supply a method to obtain mean re-
sponse times, since Little’s law does not hold in the transient regime. To obtain the mean queue-length,
utilization and throughput of the system one can call as usual the getAvg method on the SolverEnv
object, e.g.,

TODO: under development

Note that as model complexity grows, the number of iterations required by the blending algorithm to con-
verge may grow large. In such cases, the options.iter max option may be used to bound the maximum
analysis time.

Bibliography

[1] S. Balsamo. Product form queueing networks. In Günter Haring, Christoph Lindemann, and Martin
Reiser, editors, Performance Evaluation: Origins and Directions, volume 1769 of Lecture Notes in
Computer Science, pages 377–401. Springer, 2000.

[2] M. Bertoli, G. Casale, and G. Serazzi. The JMT simulator for performance evaluation of non-product-
form queueing networks. In Proc. of the 40th Annual Simulation Symposium (ANSS), pages 3–10,
2007.

[3] D. Bini, B. Meini, S. Steffé, J. F. Pérez, and B. Van Houdt. Smcsolver and q-mam: tools for matrix-
analytic methods. SIGMETRICS Performance Evaluation Review, 39(4):46, 2012.

[4] A. Bobbio, A. Horváth, M. Scarpa, and M Telek. Acyclic discrete phase type distributions: properties
and a parameter estimation algorithm. Perform. Eval., 54(1):1–32, 2003.

[5] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov Chains. Wiley,
2006.

[6] A. B. Bondi and W. Whitt. The influence of service-time variability in a closed network of queues.
Perform. Eval., 6:219–234, 1986.

[7] S. C. Bruell, G. Balbo, and P. V. Afshari. Mean value analysis of mixed, multiple class BCMP networks
with load dependent service stations. Performance Evaluation, 4:241–260, 1984.

[8] G. Casale. CoMoM: Efficient class-oriented evaluation of multiclass performance models. IEEE Trans.
on Software Engineering, 35(2):162–177, 2009.

[9] G. Casale. Exact analysis of performance models by the method of moments. Perform. Eval.,
68(6):487–506, 2011.

[10] G. Casale. Accelerating performance inference over closed systems by asymptotic methods. In Proc.
of ACM SIGMETRICS. ACM Press, 2017.

[11] G. Casale. Integrated Performance Evaluation of Extended Queueing Network Models with Line. In
2020 Winter Simulation Conference (WSC), pages 2377–2388. IEEE, dec 2020.

90

BIBLIOGRAPHY 91

[12] G. Casale, P.G. Harrison, and O.W. Hong. Facilitating load-dependent queueing analysis through
factorization. Perform. Eval., 2021.

[13] G. Casale, Richard R. Muntz, and Giuseppe Serazzi. Geometric bounds: A noniterative analysis
technique for closed queueing networks. IEEE Trans. Computers, 57(6):780–794, 2008.

[14] G. Casale, J. F. Pérez, and W. Wang. QD-AMVA: Evaluating systems with queue-dependent service
requirements. In Proceedings of IFIP PERFORMANCE, 2015.

[15] G. Casale, M. Tribastone, and P. G. Harrison. Blending randomness in closed queueing network
models. Perform. Eval., 82:15–38, 2014.

[16] K. M. Chandy and D. Neuse. Linearizer: A heuristic algorithm for queuing network models of com-
puting systems. Comm. of the ACM, 25(2):126–134, 1982.

[17] W.-M. Chow. Approximations for large scale closed queueing networks. Perform. Eval, 3(1):1–12,
1983.

[18] A. E. Conway. Fast Approximate Solution of Queueing Networks with Multi-Server Chain-Dependent
FCFS Queues, pages 385–396. Springer US, Boston, MA, 1989.

[19] A. E. Conway and N. D. Georganas. RECAL - A new efficient algorithm for the exact analysis of
multiple-chain closed queueing networks. JACM, 33(4):768–791, 1986.

[20] E. de Souza e Silva and R. R. Muntz. A note on the computational cost of the linearizer algorithm for
queueing networks. IEEE Trans. Computers, 39(6):840–842, 1990.

[21] Rares-Andrei Dobre, Zifeng Niu, and Giuliano Casale. Approximating fork-join systems via mixed
model transformations. In Companion of the 15th ACM/SPEC International Conference on Perfor-
mance Engineering, ICPE ’24 Companion, page 273–280, New York, NY, USA, 2024. Association
for Computing Machinery.

[22] D. L. Eager and J. N. Lipscomb. The AMVA priority approximation. Performance Evaluation,
8(3):173–193, 1988.

[23] G. Franks. Performance Analysis of Distributed Server Systems. PhD thesis, Carleton, 1996.

[24] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. Enhanced modeling and solution of
layered queueing networks. Software Engineering, IEEE Transactions on, 35(2):148–161, 2009.

[25] G. Franks, P. Maly, C. M. Woodside, D. C. Petriu, A. Hubbard, and M. Mroz. Layered Queueing
Network Solver and Simulator User Manual, 2012.

[26] N. Gast and B. Van Houdt. Transient and steady-state regime of a family of list-based cache replace-
ment algorithms. Queueing Syst, 83(3-4):293–328, 2016.

92 BIBLIOGRAPHY

[27] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.,
81(25):2340–2361, 1977.

[28] A. Harel, S. Namn, and J. Sturm. Simple bounds for closed queueing networks. Queueing Systems,
31(1-2):125–135, 1999.

[29] P. G. Harrison and T. T. Lee. A new recursive algorithm for computing generating functions in closed
queueing networks. In Proc. of IEEE MASCOTS Symposium, pages 223–230. IEEE Press, 2004.

[30] P. Heidelberger and K. Trivedi. Queueing network models for parallel processing with asynchronous
tasks. IEEE Transactions on Computers, 100(11):1099–1109, 1982.

[31] G. Horváth and M. Telek. Butools 2: A rich toolbox for markovian performance evaluation. In
Proc. of VALUETOOLS, pages 137–142, ICST, Brussels, Belgium, Belgium, 2017. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering).

[32] C. Knessl and C. Tier. Asymptotic expansions for large closed queueing networks with multiple job
classes. IEEE Trans. Computers, 41(4):480–488, 1992.

[33] S. S. Lavenberg. A perspective on queueing models of computer performance. Perform. Eval.,
10(1):53–76, 1989.

[34] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System Performance.
Prentice-Hall, 1984.

[35] KT Marshall. Some relationships between the distributions of waiting time, idle time and interoutput
time in the gi/g/1 queue. SIAM Journal on Applied Mathematics, 16(2):324–327, 1968.

[36] J. McKenna and D. Mitra. Asymptotic expansions and integral representations of moments of queue
lengths in closed markovian networks. JACM, 31(2):346–360, April 1984.

[37] J. F. Pérez and G. Casale. Assessing SLA compliance from Palladio component models. In Proceed-
ings of the 2nd MICAS, 2013.

[38] J. F. Pérez and G. Casale. Line: Evaluating software applications in unreliable environments. IEEE
Transactions on Reliability, 66(3):837–853, Sept 2017.

[39] M. Reiser. A queueing network analysis of computer communication networks with window flow
control. Communications, IEEE Transactions on, 27(8):1199–1209, 1979.

[40] M. Reiser. Mean-value analysis and convolution method for queue-dependent servers in closed queue-
ing networks. Perform. Eval., 1:7–18, 1981.

[41] M. Reiser and S. Lavenberg. Mean-value analysis of closed multichain queuing networks. Journal of
the ACM, 27:313–322, 1980.

BIBLIOGRAPHY 93

[42] T. G. Robertazzi. Computer Networks and Systems. Springer, 2000.

[43] J. A. Rolia and K. C. Sevcik. The method of layers. IEEE Transactions on Software Engineering,
21(8):689–700, August 1995.

[44] J. Ruuskanen, T. Berner, K.-E. Årzén, and A. Cervin. Improving the mean-field fluid model of pro-
cessor sharing queueing networks for dynamic performance models in cloud computing. Perform.
Evaluation, 151:102231, 2021.

[45] P. J. Schweitzer. Approximate analysis of multiclass closed networks of queues. In Proc. of the Int’l
Conf. on Stoch. Control and Optim., pages 25–29, Amsterdam, 1979.

[46] A. Seidmann, P. J Schweitzer, and S. Shalev-Oren. Computerized closed queueing network models of
flexible manufacturing systems: A comparative evaluation. Large Scale Systems, 12:91–107, 1987.

[47] K. Sevcik. Priority scheduling disciplines in queuing network models of computer systems. In IFIP
Congress, 1977.

[48] H. Wang and K. C. Sevcik. Experiments with improved approximate mean value analysis algorithms.
Perform. Eval., 39(1-4):189–206, 2000.

[49] W. Wang, G. Casale, and C. A. Sutton. A bayesian approach to parameter inference in queueing
networks. ACM Trans. Model. Comput. Simul., 27(1):2:1–2:26, 2016.

[50] M. Woodside. Tutorial Introduction to Layered Modeling of Software Performance. Carleton Univer-
sity, February 2013.

[51] J. Zahorjan, D. L. Eager, and H. M. Sweillam. Accuracy, speed, and convergence of approximate mean
value analysis. Perform. Eval., 8(4):255–270, 1988.

[52] S. Zhou and M. Woodside. A multiserver approximation for cloud scaling analysis. In Companion of
the 2022 ACM/SPEC International Conference on Performance Engineering, ICPE ’22, page 129–136,
New York, NY, USA, 2022. Association for Computing Machinery.

Appendix A

Examples

The table below lists the Jupyter notebooks available under the examples folder.

Table A.1: Examples

Example Problem
example cacheModel 1 A small cache model with an open arrival process
example cacheModel 2 A small cache model with a closed job population
example cacheModel 3 A layered network with a caching layer
example cacheModel 4 A layered network with a caching layer having a multi-level cache
example cacheModel 5 A caching model with state-dependent output routing
example cdfRespT 1 Station response time distribution in a single-class single-job closed network
example cdfRespT 2 Station response time distribution in a multi-chain closed network
example cdfRespT 3 Station response time distribution in a multi-chain open network
example cdfRespT 4 Simulation-based station response time distribution analysis
example cdfRespT 5 Station response time distribution under increasing job populations
example closedModel 1 Solving a single-class exponential closed queueing network
example closedModel 2 Solving a closed queueing network with a multi-class FCFS station
example closedModel 3 Solving exactly a multi-chain product-form closed queueing network
example closedModel 4 Local state space generation for a station in a closed network
example closedModel 5 1-line exact MVA solution of a cyclic network of PS and INF stations
example closedModel 6 Closed network with round robin scheduling
example closedModel 7 Comparison of different scheduling policies that preserve the product-form solution
example forkJoin 1 A simple single class open fork-join network
example forkJoin 2 A multiclass open fork-join network
example forkJoin 3 A closed model with nested forks and joins
example forkJoin 4 An open model with a fork but without a join
example forkJoin 5 A simple single class closed fork-join network
example forkJoin 6 Two open fork-joins subsystems in tandem
example forkJoin 7 Two-class fork-join with a class that switches into the other after the fork
example forkJoin 8 Two fork-joins loops within the same chain
example initState 1 Specifying an initial state and prior in a single class model.
example initState 2 Specifying an initial state and prior in a multiclass model.

Continued on next page

94

95

Table A.1 – Examples. Continued from previous page
Example Problem
example initState 3 Specifying an initial state and prior in a model with class-switching.
example layeredModel 1 Analyze a layered network specified in a LQNS XML file
example layeredModel 2 Specifying and solving a basic layered network
example loadDependent 1 Solving a single-class load-depedent closed model
example loadDependent 2 Solving a two-node multiclass load-depedent closed model
example loadDependent 3 Solving a three-node multiclass load-depedent closed model
example loadDependent 4 Solving a load-independent closed model specified as a load-dependent model
example misc 1 Use of performance indexes handles
example misc 2 Update and refresh of service times
example misc 3 Parameterization of a discriminatory processor sharing (DPS) station
example misc 4 Automatic detection of solvers that cannot analyze the model
example mixedModel 1 Solving a queueing network model with both closed and open classes
example mixedModel 2 A difficult mixed model with sparse routing among multi-server nodes
example openModel 1 Solving a queueing network model with open classes, scalar cutoff options
example openModel 2 1-line solution of a tandem network of PS and INF stations
example openModel 3 Solving a queueing network model with open classes, matrix cutoff options
example openModel 4 Trace-driven simulation of an M/M/1 queue
example openModel 5 A model illustrating the emulation of multiple sinks
example openModel 6 A large multiclass example with PS and FCFS
example prio 1 A multiclass example with PS, SIRO, FCFS, HOL priority
example prio 2 A high-load multiclass example with PS, SIRO, FCFS, HOL priority
example randomEnvironment 1 Solving a model in a 2-stage random environment with exponential rates
example randomEnvironment 2 Solving a model in a 4-stage random environment with Coxian rates
example randomEnvironment 3 Solving a model in a 3-stage random environment with Erlang rates
example stateDependentRouting 1 A model with round-robin routing
example stateDependentRouting 2 A model with round-robin routing after multi-class PH and MAP service
example stateDependentRouting 2 A load-balancer modeled as a router
example stateProbabilities 1 Computing marginal state probabilities for a node
example stateProbabilities 2 Computing marginal state probabilities for a node under class-switching
example stateProbabilities 3 Computing joint state probabilities for a system with two nodes under class-switching
example stateProbabilities 4 Computing joint state probabilities under class-switching and with delay nodes
example stateProbabilities 5 Computing probabilities under PS class-switching and with delay nodes
example stateProbabilities 6 Computing probabilities under PS and FCFS class-switching and with delay nodes
example stochPetriNet 1 JMT simulation of a simple stochastic Petri net model
example stochPetriNet 2 JMT simulation of a complex stochastic Petri net model
example scvEstimation 1 Demand estimation in a single class model using the UBR method
example scvEstimation 2 Demand estimation in a multiclass model using the ERPS method
example scvEstimation 3 Demand estimation in a multiclass model using the UBR method
example scvEstimation 4 Demand estimation in a multiclass model using the UBO method

	Introduction
	What is Line?
	Obtaining the latest release
	References
	Contact and credits
	Copyright and license
	Acknowledgement

	Getting started
	Installation and support
	Software requirements
	Documentation
	Getting help

	Getting started examples
	Controlling verbosity
	Model gallery
	Example 1: A M/M/1 queue
	Example 2: A multiclass M/G/1 queue
	Example 3: Machine interference problem
	Example 4: Round-robin load-balancing
	Example 5: Modelling a re-entrant line
	Example 6: A queueing network with caching
	Example 7: Response time distribution and percentiles
	Example 8: Optimizing a performance metric
	Example 9: Studying a departure process
	Example 10: Evaluating a CTMC symbolically

	Network models
	Network object definition
	Creating a network and its nodes
	Advanced node parameters
	Job classes
	Routing strategies
	Class switching
	Service and inter-arrival time processes

	Internals
	Representation of the model structure

	Debugging and visualization
	Model import and export
	Creating a Line model using JMT
	Supported JMT features

	Analysis methods
	Performance metrics
	Steady-state analysis
	Station average performance
	Station response time distribution
	System average performance

	Specifying states
	Station states
	Network states
	Initialization of transient classes
	State space generation

	Transient analysis
	Computing transient averages
	First passage times into stations

	Sample path analysis
	Sensitivity analysis and numerical optimization
	Fast parameter update
	Refreshing a network topology with non-probabilistic routing
	Saving a network object before a change

	Network solvers
	Overview
	Solution methods
	Line
	CTMC
	FLUID
	JMT
	MAM
	MVA
	NC
	SSA

	Supported language features and options
	Solver features
	Class functions
	Node types
	Scheduling strategies
	Statistical distributions
	Solver options

	Solver maintenance

	Layered network models
	Basics about layered networks
	LayeredNetwork object definition
	Creating a layered network topology
	Describing host demands of entries
	Debugging and visualization

	Internals
	Representation of the model structure
	Decomposition into layers

	Solvers
	LQNS
	QNS
	LN

	Model import and export

	Random environments
	Environment object definition
	Specifying the environment
	Specifying a reset policy
	Specifying system models for each stage

	Solvers
	ENV

	Examples

