
LINE: Queueing Analysis Algorithms

User manual for Kotlin

Last revision: September 22, 2025

Contents

1 Introduction 5
1.1 What is LINE? . 5
1.2 Obtaining the latest release . 6
1.3 References . 6
1.4 Contact and credits . 6
1.5 Copyright and license . 7
1.6 Acknowledgement . 7

2 Getting started 8
2.1 Installation and support . 8

2.1.1 Software requirements . 8
2.1.2 Documentation . 9
2.1.3 Getting help . 9

2.2 Getting started examples . 9
2.2.1 Controlling verbosity . 10
2.2.2 Model gallery . 10
2.2.3 Example 1: A M/M/1 queue . 11
2.2.4 Example 2: A multiclass M/G/1 queue . 13
2.2.5 Example 3: Machine interference problem . 15
2.2.6 Example 4: Round-robin load-balancing . 18
2.2.7 Example 5: Modelling a re-entrant line . 19
2.2.8 Example 6: A queueing network with caching . 21
2.2.9 Example 7: Response time distribution and percentiles 24
2.2.10 Example 8: Optimizing a performance metric . 25
2.2.11 Example 9: Studying a departure process . 26
2.2.12 Example 10: Basic layered queueing network . 27

3 Network models 29
3.1 Network object definition . 30

2

CONTENTS 3

3.1.1 Creating a network and its nodes . 30
3.1.2 Advanced node parameters . 34
3.1.3 Job classes . 35
3.1.4 Routing strategies . 38
3.1.5 Class switching . 41
3.1.6 Service and inter-arrival time processes . 43

3.2 Internals . 47
3.2.1 Representation of the model structure . 47

3.3 Debugging and visualization . 51
3.4 Model import and export . 52

3.4.1 Supported JMT features . 52

4 Analysis methods 54
4.1 Performance metrics . 54
4.2 Steady-state analysis . 55

4.2.1 Station average performance . 55
4.2.2 Station response time distribution . 56
4.2.3 System average performance . 56

4.3 Specifying states . 57
4.3.1 Station states . 57
4.3.2 Network states . 59
4.3.3 Initialization of transient classes . 60
4.3.4 State space generation . 60

4.4 Transient analysis . 60
4.4.1 Computing transient averages . 61
4.4.2 First passage times into stations . 61

4.5 Sample path analysis . 62
4.6 Sensitivity analysis and numerical optimization . 63

4.6.1 Fast parameter update . 63
4.6.2 Refreshing a network topology with non-probabilistic routing 64
4.6.3 Saving a network object before a change . 64

5 Network solvers 65
5.1 Overview . 65
5.2 Solution methods . 66

5.2.1 LINE . 69
5.2.2 CTMC . 69
5.2.3 FLUID . 70
5.2.4 JMT . 70
5.2.5 MAM . 71

4 CONTENTS

5.2.6 MVA . 71
5.2.7 NC . 73
5.2.8 SSA . 73

5.3 Supported language features and options . 73
5.3.1 Solver features . 73
5.3.2 Class functions . 74
5.3.3 Node types . 76
5.3.4 Scheduling strategies . 76
5.3.5 Statistical distributions . 77
5.3.6 Solver options . 77

6 Layered network models 81
6.1 Basics about layered networks . 81
6.2 LayeredNetwork object definition . 82

6.2.1 Creating a layered network topology . 82
6.2.2 Describing host demands of entries . 83
6.2.3 Debugging and visualization . 84

6.3 Internals . 85
6.3.1 Representation of the model structure . 85
6.3.2 Decomposition into layers . 87

6.4 Solvers . 88
6.4.1 LQNS . 88
6.4.2 QNS . 89
6.4.3 LN . 89

6.5 Model import and export . 90

7 Random environments 91
7.1 Environment object definition . 91

7.1.1 Specifying the environment . 91
7.1.2 Specifying a reset policy . 93
7.1.3 Specifying system models for each stage . 93

7.2 Solvers . 94
7.2.1 ENV . 94

A Examples 99

B API Function Reference 102

Chapter 1

Introduction

1.1 What is LINE?

LINE is an open-source software package to analyze queueing models via analytical methods and simulation.
The tool aims at simplifying the computation of performance and reliability metrics in models of systems
such as software applications, business processes, or computer networks. LINE decomposes a high-level
system model into one or more stochastic models, typically extended queueing networks, that are subse-
quently analyzed using either numerical algorithms or simulation. The stand-alone JAR version covered
in this manual (https://sf.net/p/line-solver/code/ci/master/tree/jar) is based on Java/Kotlin.

A key feature of LINE is that the solver decouples the model description from the solvers used for
its solution. That is, LINE implements model-to-model transformations that automatically translate the
model specification into the input format (or data structure) accepted by the target solver. External solvers
supported by LINE include Java Modelling Tools (JMT; http://jmt.sf.net) and LQNS (http://www.sce.carleton.ca/
rads/lqns/). Native model solvers are instead based on formalisms and techniques such as:

• Continuous-time Markov chains (CTMC)

• Fluid ordinary differential equations (FLUID)

• Matrix analytic methods (MAM)

• Normalizing constant analysis (NC)

• Mean-value analysis (MVA)

• Stochastic Simulation Algorithms (SSA)

Each solver encodes a general solution paradigm and can implement both exact and approximate analysis
methods. For example, the MVA solver implements both exact mean value analysis (MVA) and approximate

5

https://sf.net/p/line-solver/code/ci/master/tree/jar
http://jmt.sf.net
http://www.sce.carleton.ca/rads/lqns/
http://www.sce.carleton.ca/rads/lqns/

6 CHAPTER 1. INTRODUCTION

mean value analysis (AMVA). The offered methods typically differ for accuracy, computational cost, and
the subset of model features they support. A special solver (AUTO) is supplied that provides an automated
recommendation on which solver to use for a given model.

The above techniques can be applied to models specified in the following formats:

• LINE modeling language. This is a domain-specific object-oriented language designed to resemble
the abstractions available in JMT’s queueing network simulator (JSIM).

• Layered queueing network models (LQNS XML format). LINE is able to solve a sub-class of layered
queueing network models, either specified using the LINE modeling language or according to the
XML metamodel of the LQNS solver.

• JMT simulation models (JSIMg, JSIMw formats). LINE is able to import and solve queueing network
models specified using JSIMgraph and JSIMwiz. LINE models can be exported to, and visualized
with, JSIMgraph and JSIMwiz.

1.2 Obtaining the latest release

This document contains the user manual for LINE version 3.0.x, which can be obtained from:

http://line-solver.sf.net/

LINE 3.0.x has been tested using Kotlin 2.1.x with Java 8. It is also highly recommended to install Apache
Maven 3.6.3 or later and IntelliJ IDEA or equivalent for development.

1.3 References

To cite the LINE solver, we recommend to reference:

• G. Casale. “Integrated Performance Evaluation of Extended Queueing Network Models with LINE”,
in Proc. of WSC 2020, ACM Press, Dec 2020.

1.4 Contact and credits

Project coordinator: Giuliano Casale, Department of Computing, Imperial College London, 180 Queen’s
Gate, SW7 2AZ, London, United Kingdom. Web: http://wp.doc.ic.ac.uk/gcasale/

Please refer to the AUTHORS files in the codebase for detailed credits.

http://line-solver.sf.net/
http://wp.doc.ic.ac.uk/gcasale/

1.5. COPYRIGHT AND LICENSE 7

1.5 Copyright and license

Copyright Imperial College London (2012-Present). LINE is freeware and open-source, released under the
3-clause BSD license.

1.6 Acknowledgement

LINE has been partially funded by the European Commission grants FP7-318484 (MODAClouds), H2020-
644869 (DICE), H2020-825040 (RADON), and by the EPSRC grant EP/M009211/1 (OptiMAM).

Chapter 2

Getting started

2.1 Installation and support

Quick Start: This is the fastest way to get started with LINE:

1. Obtain the latest release:

• Stable release (zip file): https://sf.net/projects/line-solver/files/latest/download

Ensure that the files are decompressed in the installation folder.

2. Change the active directory to the jar/ folder, then run

mvn clean package -Pb

This will build the JAR library (Kotlin compilation) under the target/ folder.

2.1.1 Software requirements

Certain features of LINE depend on external tools and libraries. The recommended dependencies are:

• Kotlin 2.1.x with Java 8.

• Apache Maven 3.6.3 or later.

• IntelliJ IDEA or equivalent.

Partial Kotlin ports or interfaces to these libraries have been implemented within LINE:

• Java Modelling Tools (http://jmt.sf.net): version 1.2.4 or later. The latest version is automatically down-
loaded at the first call of the JMT solver.

8

https://sf.net/projects/line-solver/files/latest/download
http://jmt.sf.net

2.2. GETTING STARTED EXAMPLES 9

• KPC-Toolbox (https://github.com/kpctoolboxteam/kpc-toolbox): version 0.3.4 or later.

• M3A (https://github.com/imperial-qore/M3A): version 1.0.0.

• BuTools (https://github.com/ghorvath78/butools): version 2.0 or later.

• Q-MAM (https://win.uantwerpen.be/~vanhoudt/tools/QBDfiles.zip).

Optional dependencies recommended to utilize all features available in LINE are as follows:

• LQNS (https://github.com/layeredqueuing/V6): version 6.2.28 or later. System paths need to be config-
ured such that the lqns and lqnsim solvers need are available on the command line.

2.1.2 Documentation

This manual introduces the main concepts to define models in LINE and run its solvers. The document in-
cludes in particular several tables that summarize the features currently supported in the modeling language
and by individual solvers. Additional resources are as follows:

• MATLAB manual: https://line-solver.sf.net/doc/LINE-matlab.pdf

• Java manual: https://line-solver.sf.net/doc/LINE-java.pdf

• Kotlin manual: https://line-solver.sf.net/doc/LINE-kotlin.pdf

• Python manual: https://line-solver.sf.net/doc/LINE-python.pdf

2.1.3 Getting help

For discussions, bug reports, new feature requests, please create a thread on the Sourceforge forums:

• General discussion: https://sf.net/p/line-solver/discussion/help/

• Bugs and issues: https://sf.net/p/line-solver/tickets/

• Feature requests: https://sf.net/p/line-solver/feature-requests/

2.2 Getting started examples

In this section, we present some examples that illustrate how to use LINE. The relevant scripts are included
under the examples/gettingstarted/ folder. The examples describe one of two main available classes
of stochastic models within LINE:

https://github.com/kpctoolboxteam/kpc-toolbox
https://github.com/imperial-qore/M3A
https://github.com/ghorvath78/butools
https://win.uantwerpen.be/~vanhoudt/tools/QBDfiles.zip
https://github.com/layeredqueuing/V6
https://line-solver.sf.net/doc/LINE-matlab.pdf
https://line-solver.sf.net/doc/LINE-java.pdf
https://line-solver.sf.net/doc/LINE-kotlin.pdf
https://line-solver.sf.net/doc/LINE-python.pdf
https://sf.net/p/line-solver/discussion/help/
https://sf.net/p/line-solver/tickets/
https://sf.net/p/line-solver/feature-requests/

10 CHAPTER 2. GETTING STARTED

• Network models are extended queueing networks. Typical instances are open, closed and mixed
queueing networks, possibly including advanced features such as class-switching, finite capacity, pri-
orities, non-exponential distributions, and others. Technical background on these models can be found
in books such as [5, 32] or in tutorials such as [2, 31].

• LayeredNetwork models are layered queueing networks, i.e., models consisting of layers, each
corresponding to a Network object, which interact through synchronous and asynchronous calls.
Technical background on layered queueing networks can be found in [48].

2.2.1 Controlling verbosity

Solver verbosity may be configured at program start using, e.g.:

GlobalConstants.getInstance().verbose = VerboseLevel.DEBUG

The three available verbosity levels are:

• VerboseLevel.SILENT: Suppresses all solver output messages

• VerboseLevel.STD: Shows standard solver output messages (default)

• VerboseLevel.DEBUG: Shows detailed solver output including debug information

2.2.2 Model gallery

LINE includes a collection of classic, commonly occurring, queueing models under the gallery/ folder.
They include single queueing systems (e.g., M/M/1, M/H2/1, D/M/1, ...), tandem queueing systems,
and basic queueing networks. For example, to instantiate and estimate the mean response time for a tandem
network of M/M/1 queues we may run

SolverMVA(gallery_mm1_tandem()).avgTable().print()

Obtaining the following printout

Station JobClass QLen Util RespT ResidT ArvR Tput
--
mySource myClass 0 0 0 0 0 1.00000
Queue1 myClass 8.99916 0.90000 8.99916 8.99916 1.00000 1.00000
Queue2 myClass 8.99916 0.90000 8.99916 8.99916 1.00000 1.00000
--

The examples in the gallery may also be used as templates to accelerate the definition of basic models.
Example 9 shows later an example of gallery instantiation of a M/E2/1 queue.

2.2. GETTING STARTED EXAMPLES 11

2.2.3 Example 1: A M/M/1 queue

The M/M/1 queue is a classic model of a queueing system where jobs arrive into an infinite-capacity buffer,
wait to be processed in first-come first-serve (FCFS) order, and then leave after service completion. Arrival
and service times are assumed to be independent and exponentially distributed random variables.

In this example, we wish to compute average performance measures for the M/M/1 queue. We assume
that arrivals come in at rate λ = 1 job/s, while service has rate µ = 2 job/s. It is known from theory that the
exact value of the server utilization in this case is ρ = λ/µ = 0.5, i.e., 50%, while the mean response time
for a visit is R = 1/(µ− λ) = 1s. We wish to verify these values using JMT-based simulation, instantiated
through LINE.

The general structure of a LINE script consists of four blocks:

1. Definition of nodes

2. Definition of job classes and associated statistical distributions

3. Instantiation of model topology

4. Solution

For example, the following script solves the M/M/1 model

val model = Network("M/M/1")
// Block 1: nodes
val source = Source(model, "Source")
val queue = Queue(model, "Queue", SchedStrategy.FCFS)
val sink = Sink(model, "Sink")
// Block 2: classes
val jobclass = OpenClass(model, "Class1", 0)
source.setArrival(jobclass, Exp(1.0)) // (source,jobclass)
queue.setService(jobclass, Exp(2.0)) // (queue,jobclass)
// Block 3: topology
model.link(model.serialRouting(source, queue, sink))
// Block 4: solution
val avgTable = SolverJMT(model, "seed", 23000).avgTable()
avgTable.print()
avgTable.tget(queue, jobclass).print()
avgTable.tget("Queue", "Class1").print()

In the example, source and sink are arrival and departure points of jobs; queue is a queueing station with
FCFS scheduling; jobclass defines an open class of jobs that arrive, get served, and leave the system;
Exp(2.0) defines an exponential distribution with rate parameter λ = 2.0; finally, the command solves
for average performance measures with JMT’s simulator, using for reproducibility a specific seed for the
random number generator.

The result is a table with mean performance measures including: the number of jobs in the station either
queueing or receiving service (QLen); the utilization of the servers (Util); the mean response time for a

12 CHAPTER 2. GETTING STARTED

Figure 2.1: M/M/1 example in JSIMgraph

visit to the station (RespT); the mean residence time, i.e. the mean response time cumulatively spent at the
station over all visits (ResidT); the mean throughput of departing jobs (Tput)

Station JobClass QLen Util RespT ResidT ArvR Tput
--
Source Class1 0 0 0 0 0 0.99894
Queue Class1 0.95550 0.48736 0.95429 0.95429 0.99894 0.99987
--

One can verify that this matches JMT results by first typing

model.jsimgView()

which will open the model inside JSIMgraph, as shown in Figure 2.1. From this screen, the simulation can
be started using the green “play” button in the JSIMgraph toolbar. A pre-defined gallery of classic models
is also available, for example

val model = gallery_mm1()

returns a M/M/1 queue with 50% utilization.
If we want to select a particular row of the avgTable data structure, we can use the tget (table get)

command, for example

avgTable.tget("Queue", "Class1").print()

gives output

Station JobClass QLen Util RespT ResidT ArvR Tput

Queue Class1 0.95550 0.48736 0.95429 0.95429 0.99894 0.99987

2.2. GETTING STARTED EXAMPLES 13

--

If we specify only "Queue" or "Class1", tget will return all entries corresponding to that station or class.
Moreover, the following syntax is also valid

avgTable.tget(queue, jobclass).print()

if we specify only queue or only jobclass, will return all entries corresponding to that station or class.

2.2.4 Example 2: A multiclass M/G/1 queue

We now consider a more challenging variant of the first example. We assume that there are two classes of
incoming jobs with non-exponential service times. For the first class, service times are Erlang distributed
with unit rate and variance 1/3; they are instead read from a trace for the second class. Both classes have
exponentially distributed inter-arrival times with mean 2s.

To run this example, let us first change the working directory to the examples/ folder. Then we specify
the node block

val model = Network("M/G/1")
val source = Source(model, "Source")
val queue = Queue(model, "Queue", SchedStrategy.FCFS)
val sink = Sink(model, "Sink")

The next step consists in defining the classes. We fit automatically from mean and squared coefficient of
variation (i.e., SCV=variance/mean2) an Erlang distribution and use the Replayer distribution to request
that the specified trace is read cyclically to obtain the service times of class 2

val jobclass1 = OpenClass(model, "Class1", 0)
val jobclass2 = OpenClass(model, "Class2", 0)
source.setArrival(jobclass1, Exp(0.5))
source.setArrival(jobclass2, Exp(0.5))
queue.setService(jobclass1, Erlang.fitMeanAndSCV(1.0, 1.0 / 3.0))
try {

val fileURI = GettingStarted::class.java.getResource("/example_trace.txt")!!.toURI()
val fileName = Paths.get(fileURI).toString()
queue.setService(jobclass2, Replayer(fileName))

} catch (e: URISyntaxException) {
throw RuntimeException(e)

}

Note that the example_trace.txt file consists of a single column of doubles, each representing a service
time value, e.g.,

1.2377474e-02
4.4486055e-02
1.0027642e-02
2.0983173e-02
...

14 CHAPTER 2. GETTING STARTED

We now specify a linear route through source, queue, and sink for both classes

val P = model.initRoutingMatrix()
P.set(jobclass1, jobclass1, Network.serialRouting(source, queue, sink))
P.set(jobclass2, jobclass2, Network.serialRouting(source, queue, sink))
model.link(P)

and solve the model with JMT

val avgTable: NetworkAvgTable = SolverJMT(model).avgTable()
avgTable.print()

which gives

Station JobClass QLen Util RespT ResidT ArvR Tput
--
Source Class1 0 0 0 0 0 0.50017
Source Class2 0 0 0 0 0 0.49114
Queue Class1 0.86153 0.49840 1.73889 1.73889 0.50017 0.49953
Queue Class2 0.43751 0.04918 0.85879 0.85879 0.49114 0.49064
--

We wish now to validate this value against an analytical solver. Since jobclass2 has trace-based service
times, we first need to revise its service time distribution to make it analytically tractable, e.g., we may ask
LINE to fit an acyclic phase-type distribution [4] based on the trace

queue.setService(jobclass2, Replayer(fileName).fitAPH())

We can now use a Continuous Time Markov Chain (CTMC) to solve the system, but since the state space
is infinite in open models, we need to truncate it to be able to use this solver. For example, we may restrict
to states with at most 2 jobs in each class, checking with the verbose option the size of the resulting state
space

SolverCTMC(model,"cutoff",2,"verbose", VerboseLevel.STD).avgTable().print()
Station JobClass QLen Util RespT ResidT ArvR Tput

Source Class1 0 0 0 0 0 0.44108
Source Class2 0 0 0 0 0 0.47594
Queue Class1 0.56714 0.44108 1.28578 1.28578 0.44108 0.44108
Queue Class2 0.24423 0.04810 0.51316 0.51316 0.47594 0.47594

However, we see from the comparison with JMT that the errors of SolverCTMC are rather large. Since
the truncated state space consists of just 46 states, we can further increase the cutoff to 4, trading a slower
solution time for higher precision

SolverCTMC(model,"cutoff",4).avgTable().print()

which gives

2.2. GETTING STARTED EXAMPLES 15

Station JobClass QLen Util RespT ResidT ArvR Tput

Source Class1 0 0 0 0 0 0.49160
Source Class2 0 0 0 0 0 0.49570
Queue Class1 0.79557 0.49160 1.61832 1.61832 0.49160 0.49160
Queue Class2 0.37532 0.05010 0.75716 0.75716 0.49570 0.49570

To gain more accuracy, we could either keep increasing the cutoff value or, if we wish to compute an exact
solution, we may call the matrix-analytic method (MAM) solver instead. SolverMAM uses the repetitive
structure of the CTMC to exactly analyze open systems with an infinite state space, calling

SolverMAM(model).avgTable().print()

we get

Station JobClass QLen Util RespT ResidT ArvR Tput
--
Source Class1 0 0 0 0 0 0.50000
Source Class2 0 0 0 0 0 0.50000
Queue Class1 0.87649 0.50000 1.75299 1.75299 0.50000 0.50000
Queue Class2 0.42703 0.05054 0.85406 0.85406 0.50000 0.50000
--

2.2.5 Example 3: Machine interference problem

Closed models involve jobs that perpetually cycle within a network of queues. The machine interference
problem is a classic example, in which a group of repairmen is tasked with fixing machines as they break
and the goal is to choose the optimal size of the group. We here illustrate how to evaluate the performance
of a given group size. We consider a scenario with S = 2 repairmen, with machines that break down at a
rate of 0.5 failed machines/week, after which a machine is fixed in an exponential distributed time with rate
4.0 repaired machines/week. There are a total of N = 3 machines.

Suppose that we wish to obtain an exact numerical solution using Continuous Time Markov Chains
(CTMCs). The above model can be analyzed as follows:

val model = Network("MRP")
val delay = Delay(model, "WorkingState")
val queue = Queue(model, "RepairQueue", SchedStrategy.FCFS)
queue.setNumberOfServers(2)

val closedClass = ClosedClass(model, "Machines", 3, delay)
delay.setService(closedClass, Exp(0.5))
queue.setService(closedClass, Exp(4.0))
model.link(model.serialRouting(delay, queue))
val solver = SolverCTMC(model)
val ctmcAvgTable = solver.avgTable()
ctmcAvgTable.print()

16 CHAPTER 2. GETTING STARTED

Figure 2.2: Machine interference model in JSIMgraph

Here, delay appears in the constructor of the closed class to specify that a job will be considered completed
once it returns to the delay (i.e., the machine returns in working state). We say that the delay is thus the
reference station of cclass. The above code prints the following result

Station JobClass QLen Util RespT ResidT ArvR Tput
--
WorkingState Machines 2.66484 2.66484 2.00000 2.00000 0 1.33242
RepairQueue Machines 0.33516 0.16655 0.25154 0.25154 0 1.33242
--

As before, we can inspect and analyze the model in JSIMgraph using the command

model.jsimgView()

Figure 2.2 illustrates the result, demonstrating the automated definition of the closed class.
We can now also inspect the CTMC more in the details as follows

val stateSpace = solver.stateSpace().stateSpace
stateSpace.print()
val infGen = solver.generator().infGen
infGen.print()

which produces in output the state space of the model and the infinitesimal generator of the CTMC

[0 1 2
1 0 2
2 0 1
3 0 0]

[-8.0 8.0 0 0
0.5 -8.5 8.0 0

0 1.0 -5.0 4.0
0 0 1.5 -1.5]

2.2. GETTING STARTED EXAMPLES 17

For example, the first state (0 1 2) consists of two components: the initial 0 denotes the number of jobs in
service in the delay, while the remaining part is the state of the FCFS queue. In the latter, the 1 means
that a job of class 1 (the only class in this model) is in the waiting buffer, while the 2 means that there are
two jobs in service at the queue.

As another example, the second state (1 0 2) is similar, but one job has completed at the queue and has
then moved to the delay, concurrently triggering an admission in service for the job that was in the queue
buffer. As a result of this, the buffer is now empty. The corresponding transition rate in the infinitesimal
generator matrix is row 1 and column 2 of infGen, which has value 8.0, that is the sum of the completion
rates at the queue for each server in the first state, and where indexes 1 and 2 are the rows in stateSpace

associated to the source and destination states.
On this and larger infinite generators, we may also list individual non-zero transitions as follows

SolverCTMC.printInfGen(infGen, stateSpace);

which gives

[0.0 1.0 2.0] -> [1.0 0.0 2.0] : 8.0
[1.0 0.0 2.0] -> [0.0 1.0 2.0] : 0.5
[1.0 0.0 2.0] -> [2.0 0.0 1.0] : 8.0
[2.0 0.0 1.0] -> [1.0 0.0 2.0] : 1.0
[2.0 0.0 1.0] -> [3.0 0.0 0.0] : 4.0
[3.0 0.0 0.0] -> [2.0 0.0 1.0] : 1.5

The above printout helps in matching the state transitions to their rates.
To avoid having to inspect the stateSpace variable to determine to which station a particular column

refers to, we can alternatively use the more general invocation

localStateSpace.print();

gives

[0
1
2
3]

[1 2
0 2
0 1
0 0]

which automatically splits the state space into its constituent parts for each stateful node.
A further observation is that model.stateSpace() forces the regeneration of the state space at each

invocation, whereas the equivalent function in the CTMC solver, solver.stateSpace(), returns the state
space cached during the solution of the CTMC.

18 CHAPTER 2. GETTING STARTED

2.2.6 Example 4: Round-robin load-balancing

In this example we consider a system of two parallel processor-sharing queues and we wish to study the
effect of load-balancing on the average performance of an open class of jobs. We begin as usual with the
node block, where we now include a special node, called the Router, to control the routing of jobs from
the source into the queues:

val model = Network("RRLB")
val source = Source(model, "Source")
val lb = Router(model, "LB")
val queue1 = Queue(model, "Queue1", SchedStrategy.PS)
val queue2 = Queue(model, "Queue2", SchedStrategy.PS)
val sink = Sink(model, "Sink")

Let us then define the class block by setting exponentially-distributed inter-arrival times and service times,
e.g.,

val jobclass = OpenClass(model, "Class1")
source.setArrival(jobclass, Exp(1.0))
queue1.setService(jobclass, Exp(2.0))
queue2.setService(jobclass, Exp(2.0))

We now wish to express the fact that the router applies a round-robin strategy to dispatch jobs to the queues.
Since this is now a non-probabilistic routing strategy, we need to adopt a slightly different style to declare
the routing topology as we cannot specific anymore routing probabilities. First, we indicate the connections
between the nodes, using the addLinks function:

model.addLinks(arrayOf(
arrayOf(source, lb),
arrayOf(lb, queue1),
arrayOf(lb, queue2),
arrayOf(queue1, sink),
arrayOf(queue2, sink)

))

At this point, all nodes are automatically configured to route jobs with equal probabilities on the outgoing
links (RoutingStrategy.RAND policy). If we solve the model at this point, we see that the response time
at the queues is around 0.66s.

SolverJMT(model, "seed", 23000).avgTable().print()

which gives

Station JobClass QLen Util RespT ResidT ArvR Tput
--
Source Class1 0 0 0 0 0 1.01349
Queue1 Class1 0.31612 0.24682 0.65411 0.65411 0.50144 0.50100
Queue2 Class1 0.33403 0.25076 0.68406 0.34203 0.50446 0.50413
--

2.2. GETTING STARTED EXAMPLES 19

Figure 2.3: Load-balancing model

After resetting the internal data structures, which is required before modifying a model we can require LINE

to solve again the model using this time a round-robin policy at the router.

model.reset()
lb.setRouting(jobclass, RoutingStrategy.RROBIN)

A representation of the model at this point is shown in Figure 2.3.
Lastly, we run again JMT and find that round-robin produces a visible decrease in response times, which

are now around 0.56s.

SolverJMT(model, "seed", 23000).avgTable().print()

which gives

Station JobClass QLen Util RespT ResidT ArvR Tput
--
Source Class1 0 0 0 0 0 1.00887
Queue1 Class1 0.30429 0.26118 0.58482 0.58482 0.50290 0.50526
Queue2 Class1 0.29282 0.24397 0.57293 0.28647 0.50496 0.50526
--

2.2.7 Example 5: Modelling a re-entrant line

Let us now consider a simple example inspired to the classic problem of modeling re-entrant lines. This
arises in manufacturing systems where parts (i.e., jobs) re-enter multiple times a machine (i.e., a queueing
station), asking at each visit a different class of service. This implies, for example, that the service time at

20 CHAPTER 2. GETTING STARTED

Figure 2.4: Re-entrant lines as an example of class-switching

every visit could feature a different mean or a different distribution compared to the previous visits, thus
modeling a different stage of processing.

To illustrate this, consider for example a degenerate model composed by a single FCFS queue and K
classes. In this model, a job that completes processing in class k is routed back at the tail of the queue in
class k + 1, unless k = K in which case the job re-enters in class 1.

We take the following assumptions: K = 3 and class k has an Erlang-2 service time distribution at the
queue with mean equal to k; the system starts with N1 = 1 jobs in class 1 and zero jobs in all other classes.

val model = Network("RL")
val queue = Queue(model, "Queue", SchedStrategy.FCFS)

val jobClass1 = ClosedClass(model, "Class1", 1, queue)
val jobClass2 = ClosedClass(model, "Class2", 0, queue)
val jobClass3 = ClosedClass(model, "Class3", 0, queue)

queue.setService(jobClass1, Erlang.fitMeanAndOrder(1, 2))
queue.setService(jobClass2, Erlang.fitMeanAndOrder(2, 2))
queue.setService(jobClass3, Erlang.fitMeanAndOrder(3, 2))

val P = model.initRoutingMatrix()
P.set(jobClass1, jobClass2, queue, queue, 1.0)
P.set(jobClass2, jobClass3, queue, queue, 1.0)
P.set(jobClass3, jobClass1, queue, queue, 1.0)
model.link(P)

The corresponding JMT model is shown in Figure 2.4, where it can be seen that the class-switching rule is
automatically enforced by introduction of a ClassSwitch node in the network.
We can now simulate the performance indexes for the different classes, for example using LINE’s normal-
izing constant solver (SolverNC)

SolverNC(model).avgTable().print()

gives

Station JobClass QLen Util RespT ResidT ArvR Tput
--

2.2. GETTING STARTED EXAMPLES 21

Queue Class1 0.16667 0.16667 1.00000 0.33333 0.16667 0.16667
Queue Class2 0.33333 0.33333 2.00000 0.66667 0.16667 0.16667
Queue Class3 0.50000 0.50000 3.00000 1.00000 0.16667 0.16667
--

Suppose now that the job is considered completed, for the sake of computation of system performance
metrics, only when it departs the queue in class K (here Class3). By default, LINE will return system-wide
performance metrics using the avgSysTable method, i.e.,

SolverNC(model).avgSysTable().print()

which gives

Chain JobClasses SysRespT SysTput

Chain0 (Class1 Class2 Class3) 2.0000000000000000 0.5000000000000000

This method identifies the model chains, i.e., groups of classes that can exchange jobs with each other, but
not with classes in other chains. Since the job can switch into any of the three classes, in this model there is
a single chain comprising the three classes.

We see that the throughput of the chain is 0.5, which means that LINE is counting every departure from
the queue in any class as a completion for the whole chain. This is incorrect for our model since we want to
count completions only when jobs depart in Class3. To require this behavior, we can tell to the solver that
passages for classes 1 and 2 through the reference station should not be counted as completions

jobClass1.setCompletes(false)
jobClass2.setCompletes(false)

This modification then gives the correct chain throughput, matching the one of Class3 alone

SolverNC(model).avgSysTable().print()

Chain JobClasses SysRespT SysTput

Chain1 (Class1 Class2 Class3) 6.0000000000000010 0.1666666666666667

2.2.8 Example 6: A queueing network with caching

In this more advanced example, we show how to include in a queueing network a cache adopting a least-
recently used (LRU) replacement policy. Under LRU, upon a cache miss the least-recently accessed item
will be discarded to make room for the newly requested item.

We consider a cache with a capacity of 50 items, out of a set of 1000 cacheable items. Items are accessed
by jobs visiting the cache according to a Zipf-like law with exponent α = 1.4 and defined over the finite set
of items. A client cyclically issues requests for the items, waiting for a reply before issuing the next request.

22 CHAPTER 2. GETTING STARTED

We assume that a cache hit takes on average 0.2ms to process, while a cache hit takes 1ms. We ask for the
average request throughput of the system, differentiated across hits and misses.

Node block As usual, we begin by defining the nodes. Here a delay node will be used to describe the time
spent by the requests in the system, while the cache node will determine hits and misses:

val model = Network("QNC")
// Block 1: nodes
val clientDelay = Delay(model, "Client")
val cacheNode = Cache(model, "Cache", 1000, 50, ReplacementStrategy.LRU)
val cacheDelay = Delay(model, "CacheDelay")

Class block We define a set of classes to represent the incoming requests (clientClass), cache hits
(hitClass) and cache misses (missClass). These classes need to be closed to ensure that there is a single
outstanding request from the client at all times:

val clientClass = ClosedClass(model, "ClientClass", 1, clientDelay, 0)
val hitClass = ClosedClass(model, "HitClass", 0, clientDelay, 0)
val missClass = ClosedClass(model, "MissClass", 0, clientDelay, 0)

We then assign the processing times, using the Immediate distribution to ensure that the client issues
immediately the request to the cache:

clientDelay.setService(clientClass, Immediate())
cacheDelay.setService(hitClass, Exp.fitMean(0.2))
cacheDelay.setService(missClass, Exp.fitMean(1.0))

The next step involves specifying that the request uses a Zipf-like distribution (with parameter α = 1.4) to
select the item to read from the cache, out of a pool of 1000 items

cacheNode.setRead(clientClass, Zipf(1.4, 1000))

Finally, we ask that the job should become of class hitClass after a cache hit, and should become of class
missClass after a cache miss:

cacheNode.setHitClass(clientClass, hitClass)
cacheNode.setMissClass(clientClass, missClass)

Topology block Next, in the topology block we setup the routing so that the request, which starts in
clientClass at the clientDelay, then moves from there to the cache, remaining in clientClass

val P = model.initRoutingMatrix()
P.set(clientClass, clientClass, clientDelay, cacheNode, 1.0)

Internally to the cache, the job will switch its class into either hitClass or missClass. Upon departure
in one of these classes, we ask it to join in the same class cacheDelay for further processing

2.2. GETTING STARTED EXAMPLES 23

P.set(hitClass, hitClass, cacheNode, cacheDelay, 1.0)
P.set(missClass, missClass, cacheNode, cacheDelay, 1.0)

Lastly, the job returns to clientDelay for completion and start of a new request, which is done by switch-
ing its class back to clientClass

P.set(hitClass, clientClass, cacheDelay, clientDelay, 1.0)
P.set(missClass, clientClass, cacheDelay, clientDelay, 1.0)

The above routing strategy is finally applied to the model

model.link(P)

Solution block To solve the model, since JMT does not support cache modeling, we use the native simu-
lation engine provided within LINE, the SSA solver:

val ssaAvgTable = SolverSSA(model, "samples", 20000, "seed", 1, "verbose", true).avgTable()

The above script produces the following result

SSA samples: 20000
SolverSSA analysis (method: default, lang: java) completed.
Station JobClass QLen Util RespT ResidT ArvR Tput

Client ClientClass 0 0 1.0e-08 0 0 2.91621
CacheDelay HitClass 0.47617 0.47617 0.20000 0.16524 0 2.38083
CacheDelay MissClass 0.52383 0.52383 1.00000 0.17380 0 0.52383

The departing flows from the cacheDelay are the miss and hit rates. Thus, the hit rate is 2.4554 jobs per
unit time, while the miss rate is 0.50892 jobs per unit time.

Let us now suppose that we wish to verify the result with a longer simulation, for example with 10 times
more samples. To this aim, we can use the automatic parallelization of SSA

AvgTable ssaAvgTablePara = new SolverSSA(model)
.options()
.method("parallel")
.samples(20000)
.seed(1)
.build()
.avgTable();

This gives us a rather similar result, when run on a dual-core machine

System.out.println(ssaAvgTablePara);

The execution time is longer than usual at the first invocation of the parallel solver due to the time needed
by MATLAB to bootstrap the parallel pool, in this example around 22 seconds. Successive invocations of
parallel SSA normally take much less, with this example around 7 seconds each.

24 CHAPTER 2. GETTING STARTED

2.2.9 Example 7: Response time distribution and percentiles

In this example we illustrate the computation of response time percentiles in a queueing network model. We
begin by instantiating a simple closed model consisting of a delay followed by a processor-sharing queueing
station.

val model = Network("Model")

val node = arrayOfNulls<Node>(2)
node[0] = Delay(model, "Delay")
node[1] = Queue(model, "Queue1", SchedStrategy.PS)

There is a single class consisting of 5 jobs that circulate between the two stations, taking exponential service
times at both.

val jobclass = arrayOfNulls<JobClass>(1)
jobclass[0] = ClosedClass(model, "Class1", 5, node[0] as Station, 0)

(node[0] as Delay).setService(jobclass[0]!!, Exp(1.0))
(node[1] as Queue).setService(jobclass[0]!!, Exp(0.5))

model.link(Network.serialRouting(node[0], node[1]))

We now wish to compare the response time distribution at the PS queue computed analytically with
a fluid approximation against the simulated values returned by JMT. To do so, we call the getCdfRespT

method

val RDfluid = SolverFluid(model).cdfRespT()
val RDsim = SolverJMT(model, "seed", 23000, "samples", 10000).cdfRespT()

The returned data structures, RDfluid and RDsim, are Matrix arrays where element (i,r) describes the
response times at station i for class r. . The first column represents the cumulative distribution function
(CDF) value F (t) = Pr(T ≤ t), where T is the random variable denoting the response time, while t is the
percentile appearing in the corresponding entry of the second column.

which produces the graph shown in Figure ??.
We can readily compute the percentiles from the RDfluid and RDsim data structures, e.g., for the 95th

and 99th percentiles of the simulated distribution

// Calculate percentiles from CDF data
Matrix cdf = RDsim[1][0]; // Station 2, Class 1
double prc95 = 0, prc99 = 0;
for (int i = 0; i < cdf.getNumRows(); i++) {

if (cdf.get(i, 0) < 0.95) {
prc95 = cdf.get(i, 1);

}
if (cdf.get(i, 0) < 0.99) {

prc99 = cdf.get(i, 1);
}

}
System.out.println("95th percentile: " + prc95);

2.2. GETTING STARTED EXAMPLES 25

System.out.println("99th percentile: " + prc99);

That is, 95% of the response times at the PS queue (node 2, class 1) are less than or equal to 27.0222 time
units, while 99% are less than or equal to 41.8743 time units.

2.2.10 Example 8: Optimizing a performance metric

In this example, we show how to optimize with the help of LINE a performance metric. We wish to find
the optimal routing probabilities that minimize average response times for two parallel processor sharing
queues. We assume that jobs are fed by a delay station, arranged with the two queues in a closed network
topology.

In this example, we use the jcobyla optimizer, which can be imported by including the following
dependency in pom.xml:

<dependency>
<groupId>de.xypron.jcobyla</groupId>
<artifactId>jcobyla</artifactId>
<version>1.3</version>

</dependency>

We will now define a queueing network model, called routingModel, which accepts a parameter describ-
ing a routing probability

Calcfc objFun = new Calcfc() {
@Override
public double compute(int n, int m, double[] x, double[] con) {

return routingModel.apply(x[0]) ;
}

};

Within the function definition, we instantiate the two queues and the delay station

val model = Network("LoadBalCQN")
// Block 1: nodes
val delay = Delay(model, "Think")
val queue1 = Queue(model, "Queue1", SchedStrategy.PS)
val queue2 = Queue(model, "Queue2", SchedStrategy.PS)

We assume that 16 jobs circulate among the nodes, and that the service rates are σ = 1 jobs per unit time at
the delay, and µ1 = 0.75 and µ2 = 0.50 at the two queues:

// Block 2: classes
val cclass = ClosedClass(model, "Job1", 16, delay)
delay.setService(cclass, Exp(1))
queue1.setService(cclass, Exp(0.75))
queue2.setService(cclass, Exp(0.50))

We initially setup a topology with arbitrary values for the routing probabilities between delay and queues,
ensuring that jobs completing at the queues return to the delay:

26 CHAPTER 2. GETTING STARTED

val P = model.initRoutingMatrix()
P.set(cclass, queue1, delay, 1.0)
P.set(cclass, queue2, delay, 1.0)
model.link(P)

We now return the system response time for the jobs as a function of the routing probability p to choose
queue 1 instead of queue 2:

val routingModel = { p: Double ->
// Block 4: solution
P.set(cclass, delay, queue1, p)
P.set(cclass, delay, queue2, 1 - p)
model.reset()
model.link(P)
val solver = SolverMVA(model, "exact")
solver.avgSysRespT()[0] as Double

}

Lastly, we optimize the function we defined

val p = doubleArrayOf(0.5)
Cobyla.findMinimum(routingModel, 1, 0, p, 0.5, 1.0e-8, 0, 10000)

println("Optimal p: ${p[0]}")

We are now ready to run the example. The execution returns the optimal value 0.6104880200336327.

2.2.11 Example 9: Studying a departure process

This examples illustrates LINE’s support for extracting simulation data about particular events in an extended
queueing network, such as departures from a particular queue.

Our goal is to obtain the squared coefficient of variation of the inter-departure times from a M/E2/1
queue, which has Poisson arrivals and 2-phase Erlang distributed service times.

Because this is a classic model, we can find it in LINE’s model gallery. The additional return parameters
(e.g., source,queue, ...) provide handles to the entities within the model.

val model = gallery_merl1()

We now extract 50,000 samples from simulation based on the underpinning continuous-time Markov chain

val solver = SolverCTMC(model, "cutoff", 150, "seed", 23000)
val sa = solver.sampleSysAggr(100000)

The returned data structure supplies information about the stateful nodes (here source and queue) at each
of the 50,000 instants of sampling, together with the events that have been collected at these instants.

// Display structure of sampled aggregated data
println("Sample aggregate data structure:")
println("State data points: ${sa.getNumRows()}")

2.2. GETTING STARTED EXAMPLES 27

println("Event data available: ${sa.getNumCols() > 1}")

As an example, the first two events occur both at timestamp 0 and indicate a departure event from node
1 (the type EventType.DEP maps to event: DEP) followed by an arrival event at node 2 (the type
EventType.ARV maps to event: ARV) which accepts it always (prob: 1).

// Access event data
Event event1 = sa.getEvent(1);
System.out.println("Event 1 - Node: " + event1.getNode() + ", Event: " + ...
event1.getEventType());
Event event2 = sa.getEvent(2);
System.out.println("Event 2 - Node: " + event2.getNode() + ", Event: " + ...
event2.getEventType());

We are now ready to filter the timestamps of events related to departures from the queue node

// Filter events for departures from queue node
int queueIndex = model.getNodeIndex(queue);
boolean[] filtEvent = sa.filterEvents(queueIndex, EventType.DEP);

Followed by a calculation of the time series of inter-departure times

// Calculate inter-departure times
double[] departureTimes = sa.getFilteredEventTimes(filtEvent);
double[] interDepTimes = new double[departureTimes.length - 1];
for (int i = 1; i < departureTimes.length; i++) {

interDepTimes[i-1] = departureTimes[i] - departureTimes[i-1];
}

We may now for example compute the squared coefficient of variation of this process

// Calculate squared coefficient of variation
double mean = Arrays.stream(interDepTimes).average().orElse(0.0);
double variance = Arrays.stream(interDepTimes).map(x -> Math.pow(x - mean, ...
2)).average().orElse(0.0);
double SCVdEst = variance / (mean * mean);
System.out.println("SCV estimate: " + SCVdEst);

which evaluates to 0.8750. Using Marshall’s exact formula for the GI/G/1 queue [34], we get a theoretical
value of 0.8750.

2.2.12 Example 10: Basic layered queueing network

This example demonstrates how to model and analyze a basic layered queueing network (LQN) representing
a simple client-server application with two tiers: a client layer and a database layer.The LQN consists of a
client processor P1 with a reference task T1 (10 users), a database processor P2 with an infinite server task
T2, synchronous calls from the client to the database, exponential service times at both layers.

We start by creating the layered network instance:

val model = LayeredNetwork("ClientDBSystem")

28 CHAPTER 2. GETTING STARTED

Next, we define the processors and tasks:

// Create processors
val P1 = Processor(model, "ClientProcessor", 1, SchedStrategy.PS)
val P2 = Processor(model, "DatabaseProcessor", 1, SchedStrategy.PS)

// Create tasks
val T1 = Task(model, "ClientTask", 10, SchedStrategy.REF).on(P1)
T1.setThinkTime(Exp.fitMean(5.0)) // 5-second think time
val T2 = Task(model, "DatabaseTask", Int.MAX_VALUE, SchedStrategy.INF).on(P2)

Now we define the entries that represent service interfaces:

val E1 = Entry(model, "ClientEntry").on(T1)
val E2 = Entry(model, "DatabaseEntry").on(T2)

Finally, we define the activities that specify the service demand and the synchronous calls

// Client activity: processes request and calls database
val A1 = Activity(model, "ClientActivity", Exp.fitMean(1.0)).on(T1)
A1.bound_to(E1).synch_call(E2, 2.5) // 2.5 database calls on average

// Database activity: processes database request
val A2 = Activity(model, "DatabaseActivity", Exp.fitMean(0.8)).on(T2)
A2.bound_to(E2).replies_to(E2)

Now we solve the layered network using the LN solver with MVA applied to each layer: The output
shows the performance metrics for each node in the layered network:

val solver = SolverLN(model, SolverType.MVA)
val avgTable = solver.avgTable()
avgTable.print()

The output shows the performance metrics for each node in the layered network:

Node NodeType QLen Util RespT ResidT ArvR Tput
P1 Processor NaN 0.99595 NaN NaN NaN NaN
P2 Processor NaN 0.04146 NaN NaN NaN NaN
T1 Task 23.46825 0.66407 NaN 1.09193 NaN 13.28141
T2 Task 8.67822 0.33188 NaN 0.55610 NaN 13.27534
T3 Task 0.12049 0.04146 NaN 0.02000 NaN 6.21891
E1 Entry 23.46825 NaN 1.76700 NaN NaN 13.28141
E2 Entry 8.67822 NaN 0.65371 NaN NaN 13.27534
E3 Entry 0.12049 NaN 0.01938 NaN NaN 6.21891
AS1 Activity 23.43886 0.66407 1.76479 1.09193 NaN 13.28141
AS2 Activity 8.66725 0.33188 0.65288 0.55610 NaN 13.27534
AS3 Activity 0.12438 0.04146 0.02000 0.02000 NaN 6.21891

Chapter 3

Network models

Throughout this chapter, we discuss the specification of Network models, which are extended queueing
networks. LINE currently supports open, closed, and mixed networks with non-exponential service and
arrivals, and state-dependent routing. All solvers support the computation of basic performance metrics,
while some more advanced features are available only in specific solvers. Each Network model requires
in input a description of the nodes, the network topology, and the characteristics of the jobs that circulate
within the network. In output, LINE returns performance and reliability metrics.

The default metrics supported by all solvers are as follows:

• Mean queue-length (QLen). This is the mean number of jobs residing at a node when this is observed
at a random instant of time.

• Mean utilization (Util). For nodes that serve jobs, this is the mean fraction of time the node is busy
processing jobs. In both single-server and multi-server nodes, this is a number normalized between
0 and 1, corresponding to 0% and 100%. In infinite-server nodes, the utilization is set by convention
equal to the mean queue-length, therefore taking the interpretation of the mean number of jobs in
execution at the station.

• Mean response time (RespT). This is the mean time a job spends traversing a node within a network.
If the node is visited multiple times, the response time is the time spent for a single visit to the node.

• Mean residence time (ResidT). This is the total time a job accumulates, on average, to traverse a node
within a network. If the node is visited multiple times, the residence time is the time accumulated
overall visits to the node prior to returning to the reference station or arriving to a sink.

• Mean throughput (Tput). This is the mean departure rate of jobs completed at a resource per time
unit. Typically, this matches the mean arrival rate, unless the node switches the class of the jobs in
which case the arrival rate of a class may not match its departure rate.

29

30 CHAPTER 3. NETWORK MODELS

Table 3.1: Nodes available in Network models.
Node Description

Cache A node to switch job classes based on hits/misses in its cache
ClassSwitch A node to switch job classes based on a static probability matrix
Delay A station where jobs spend time without queueing
Fork A node that forks jobs into tasks
Join A node that joins sibling tasks into the original job
Logger A node that logs passage of jobs
Queue A node where jobs queue and receive service
Router A node that routes jobs to other nodes
Sink Exit point for jobs in open classes
Source Entry point for jobs in open classes

The above metrics refer to the performance characteristics of individual nodes. Response times and through-
puts can also be system-wide, meaning that they can describe end-to-end performance during the visit to the
network. In this case, these metrics are called system metrics.

3.1 Network object definition

3.1.1 Creating a network and its nodes

A queueing network can be described in LINE using the Network class constructor with a unique string
identifying the model name:

val model: Network = Network("myModel")

The returned object of the Network class offers functions to instantiate and manage resource nodes (stations,
delays, caches, ...) visited by jobs of several types (classes).

A node is a resource in the network that can be visited by a job. A node must have a unique name and can
either be stateful or stateless, the latter meaning that the node does not require state variables to determine
its state or actions. If jobs visiting a stateful node can be required to spend time in it, the node is also said to
be a station. A list of nodes available in Network models is given in Table 3.1.

We now provide more details on each of the nodes available in Network models.

Queue node. A Queue specifies a queueing station from its name and scheduling strategy, e.g.

val queue: Queue = Queue(model, "Queue1", SchedStrategy.FCFS)

3.1. NETWORK OBJECT DEFINITION 31

specifies a first-come first-serve queue. It is alternatively possible to instantiate a queue using the QueueingStation
constructor, which is merely an alias for Queue.

Queueing stations have by default a single server. The setNumberOfServers method can be used to
instantiate multi-server stations.

Valid scheduling strategies are specified within the SchedStrategy static class and include:

• First-come first-serve (SchedStrategy.FCFS)

• Infinite-server (SchedStrategy.INF)

• Processor-sharing (SchedStrategy.PS)

• Service in random order (SchedStrategy.SIRO)

• Discriminatory processor-sharing (SchedStrategy.DPS)

• Generalized processor-sharing (SchedStrategy.GPS)

• Shortest expected processing time (SchedStrategy.SEPT)

• Shortest job first (SchedStrategy.SJF)

• Head-of-line priority (non-preemptive) (SchedStrategy.HOL)

• Polling (SchedStrategy.POLLING)

If a strategy requires class weights, these can be specified directly as an argument to the setService

function or using the setStrategyParam function, see later the description of DPS scheduling for an
example.

Delay node. Delay stations, also called infinite server stations, may be instantiated either as objects of
Queue class, with the SchedStrategy.INF scheduling strategy, or using the following specialized con-
structor

val delay: Delay = Delay(model, "ThinkTime")

As for queues, for readability it is possible to instantiate delay nodes using the DelayStation class
which is an alias for the Delay class.

Source and Sink nodes. As seen in the M/M/1 getting started example, these nodes are mandatory el-
ements for the specification of open classes. Their constructor only requires a specification of the unique
name associated to the nodes:

val source: Source = Source(model, "Source")
val sink: Sink = Sink(model, "Sink")

32 CHAPTER 3. NETWORK MODELS

Fork and Join nodes. The fork and join nodes are currently available only for the JMT solver. The Fork
splits an incoming job into a set of sibling tasks, sending out one task for each outgoing link. These tasks
inherit the class of the original job and are served as normal jobs until they are reassembled at a Join station.

Their specification of Fork and Join nodes only requires the name of the node

val fork: Fork = Fork(model, "Fork")
val join: Join = Join(model, "Join", fork)

The number of tasks sent by a Fork on each output link can be set using the setTasksPerLink method
of the fork object. To enable effective analytical approximations, presently LINE requires that every join
node is bound to a specific fork node, although specific solvers will ignore this information (e.g., JMT).

Also note that the routing probabilities out of the Fork node need to be set to 1.0 towards every other
node connected to the Fork. For example, a Fork sending jobs in class 1 to nodes A, B and C, cannot send
jobs in class 2 only to A and B: it must send them to all three connected nodes A, B and C. A new fork
node visited only by class-2 jobs needs to be created in order to send that class of jobs only to A and B.

After splitting a job into tasks, LINE takes the convention that visit counts refer to the average number
of passages at the target resources for the original job, scaled by the number of tasks. For example, if a job
is split into two tasks at a fork node, each visiting respectively nodes A and B, the average visit count at A
and B will be 0.5.

ClassSwitch node. This is a stateless node to change the class of a transiting job based on a static proba-
bilistic policy. For example, it is possible to specify that all jobs belonging to class 1 should become of class
2 with probability 1.0, or that a transiting job of class 2 should become of class 1 with probability 0.3. This
example is instantiated as follows

val cs: ClassSwitch = ClassSwitch(model,"ClassSwitchPoint", Matrix("[0.0, 1.0; 0.3, 0.7]"))

Note that the argument of the Matrix constructor is a string specifying a matrix in MATLAB format, i,e.,
where the semi-colon separates rows. Alternatively, it is also possible to use Python format, e.g.,

val cs: ClassSwitch = ClassSwitch(model,"ClassSwitchPoint", Matrix("[[0.0, 1.0], [0.3, ...
0.7]]"))

Cache node. This is a stateful node to store one or more items in a cache of finite size, for which it is
possible to specify a replacement policy. The cache constructor requires the total cache capacity and the
number of items that can be referenced by the jobs in transit, e.g.,

val cacheNode: Cache = Cache(model, "Cache1", nitems, capacity, ReplacementStrategy.LRU)

If the capacity is a scalar integer (e.g., 15), then it represents the total number of items that can be
cached and the value cannot be greater than the number of items. Conversely, if it is a vector of integers
(e.g., Matrix("[10,5]")) then the node is a list-based cache, where the vector entries specify the capacity of
each list. We point to [25] for more details on list-based caches and their replacement policies.

3.1. NETWORK OBJECT DEFINITION 33

Available replacement policies are specified within the ReplacementStrategy static class and in-
clude:

• First-in first-out (ReplacementStrategy.FIFO)

• Random replacement (ReplacementStrategy.RR)

• Least-recently used (ReplacementStrategy.LRU)

• Strict first-in first-out (ReplacementStrategy.SFIFO)

Upon cache hit or cache miss, a job in transit is switched to a user-specified class. More details are given
later in Section 3.1.5.

Router node. This node is able to route jobs according to a specified RoutingStrategy, which can
either be probabilistic or not (e.g., round-robin). Upon entering a Router, a job neither waits nor receives
service; it is instead directly forwarded to the next node according to the specified routing strategy. A
Router can be instantiated as follows:

val router: Router = Router(model, "RouterNode")

An example of use of this node is given in Section 2.2.6. Routing strategies need to be specified for each
class using the setRouting method and valid choices are as follows

• Random routing (RoutingStrategy.RAND)

• Round robin (RoutingStrategy.RROBIN)

• Probabilistic routing (RoutingStrategy.PROB)

• Join-the-shortest-queue (RoutingStrategy.JSQ)

For example, assume that oclass is a class of jobs. In order to route jobs in this class with equal probabili-
ties to every outgoing link we set

router.setRouting(oclass, RoutingStrategy.RAND)

It should be noted that setRouting is also available for all other nodes such as queueing stations, delays,
etc. Therefore, the added value of the Router node is the ability to represent certain system elements that
centralize the routing logic, such as load balancers.

34 CHAPTER 3. NETWORK MODELS

Logger node. A logger node is a node that closely resembles the logger node available in the JSIMgraph
simulator within JMT. At present, models that include this element can only be solved using the JMT solver.

A Logger node records information about passing jobs in a csv file, such as the timestamp of passage
and general information about the jobs. The node can be instantiated as follows

val logger = Logger(model, "LoggerNode", "logfile.csv")

The following methods can be used to specify the information that needs to be stored in the csv file

• setStartTime: record a timestamp for the wallclock time when the simulation started.

• setJobID: record a unique id for the passing job.

• setJobClass: record the class of the passing job.

• setTimestamp: record a timestamp for the simulated time when the job passed in the logger.

• setTimeSameClass: record the time elapsed since the last passage of a job of the same class.

• setTimeAnyClass: record the time elapsed since the last passage of a job of any class.

Each method can be called either with a single true or false argument, to enable or disable the recording
of the corresponding information, e.g.

logger.setJobClass(true)

The routing behavior of jobs can be set up as explained for regular nodes such as queues or delay stations.

3.1.2 Advanced node parameters

Scheduling parameters

Upon setting service distributions at a station, one may also specify scheduling parameters such as weights
as additional arguments to the setService function. For example, if the node implements discriminatory
processor sharing (SchedStrategy.DPS), the command

queue.setService(class2, Cox2.fitMeanAndSCV(0.2,10.0), 5.0)

assigns a weight 5.0 to jobs in class 2. The default weight of a class is 1.0.

Finite buffers

The functions setCapacity and setChainCapacity of the Station class are used to place constraints
on the number of jobs, total or for each chain, that can reside within a station. Note that LINE does not
allow one to specify buffer constraints at the level of individual classes unless chains contain a single class,
in which case setChainCapacity is sufficient for the purpose.

For example,

3.1. NETWORK OBJECT DEFINITION 35

cqn_threeclass_hyperl()
delay.setChainCapacity(Matrix("[1,1]"))
model.refreshCapacity()

creates an example model with two chains and three classes (specified in cqn_threeclass_hyperl.m) and
requires the second station to accept a maximum of one job in each chain. Note that if we were to ask for a
higher capacity, such as , which exceeds the total job population in chain 2, LINE would have automatically
reduced the value 7 to the chain 2 job population (2). This automatic correction ensures that functions that
analyze the state space of the model do not generate unreachable states.

The refreshCapacity function updates the buffer parameterizations, performing appropriate san-
ity checks. Since cqn_threeclass_hyperl has already invoked a solver prior to our changes, the
requested modifications are materially applied by LINE to the network only after calling an appropriate
refreshStruct function, see the sensitivity analysis section. If the buffer capacity changes were made
before the first solver invocation on the model, then there would not be the need for a refreshCapacity
call, since the internal representation of the Network object used by the solvers is still to be created.

Cyclic polling

In the polling scheduling policy, the server cyclically visits the input buffer of each job class, processing
jobs from that queue for a finite amount of time before switching to the next buffer. This scheduling policy
further requires to specify the polling type at the station, chosen among:

• Exhaustive (PollingType.EXHAUSTIVE), where the server moves to the next input buffer only after
finishing all jobs in the current buffer, including new arrivals during the service period;

• Gated (PollingType.GATED), where the number of served jobs for a buffer equals the jobs therein
at the instant where the server switched to processing that buffer. Thus, newly arrived jobs during the
service period will be processed at the next period.

• K-Limited (PollingType.KLIMITED), where the number of jobs processed is a constant K spec-
ified by the user. If the queue empties before k jobs have been served, the server will move on and
attend the next buffer.

To specify a polling type at a queue, we may write for instance

queue.setPollingType(PollingType.EXHAUSTIVE)
// or for K-Limited with K=2
queue.setPollingType(PollingType.KLIMITED, 2)

3.1.3 Job classes

Jobs travel within the network placing service demands at the stations. The demand placed by a job at
a station depends on the class of the job. Jobs in open classes arrive from the external world and, upon

36 CHAPTER 3. NETWORK MODELS

completing the visit, leave the network. Jobs in closed classes start within the network and are forbidden to
ever leave it, perpetually cycling among the nodes.

Open classes

The constructor for an open class only requires the class name and the creation of special nodes called
Source and Sink

val source: Source = Source(model, "Source")
val sink: Sink = Sink(model, "Sink")

Sources are special stations holding an infinite pool of jobs and representing the external world. Sinks are
nodes that route a departing job back into this infinite pool, i.e., into the source. Note that a network can
include at most a single Source and a single Sink.

Once source and sink are instantiated in the model, it is possible to instantiate open classes using

val class1: OpenClass = OpenClass(model, "Class1")

LINE does not require explicitly associating source and sink with the open classes in their constructors, as
this is done automatically. However, the LINE language requires explicitly creating these nodes since the
routing topology needs to indicate the arrival and departure points of jobs in open classes. However, if the
network does not include open classes, the user will not need to instantiate a Source and a Sink.

Closed classes

To create a closed class, we need instead to indicate the number of jobs that start in that class (e.g., 5 jobs)
and the reference station for that class (e.g., queue), i.e.:

val class2: ClosedClass = ClosedClass(model, "Class2", 5, queue)

The reference station indicates a point in the network used to calculate certain performance indexes, called
system performance indexes. The end-to-end response time for a job in an open class to traverse the system
is an example of a system performance index (system response time). The reference station of an open
class is always automatically set by LINE to be the . Conversely, the reference station needs to be indicated
explicitly in the constructor for closed classes since the point at which a class job completes execution
depends on the semantics of the model.

LINE also supports a special class of jobs, called self-looping jobs, which perpetually loop at the refer-
ence station, remaining in their class. The following example shows the syntax to specify a self-looping job,
which is identical to closed classes but there is no need later to specify routing information.

val model: Network = Network("model")
// Block 1: nodes
val delay: Delay = Delay(model, "Delay")
val queue: Queue = Queue(model, "Queue1", SchedStrategy.FCFS)
// Block 2: classes

3.1. NETWORK OBJECT DEFINITION 37

val cclass: ClosedClass = ClosedClass(model, "Class1", 10, delay, 0)
val slclass: SelfLoopingClass = SelfLoopingClass(model, "SLC", 1, queue, 0)
delay.setService(cclass, Exp(1.0))
queue.setService(cclass, Exp(1.5))
queue.setService(slclass, Exp(1.5))
// Block 3: topology
val P: Matrix = model.initRoutingMatrix()
P.set(cclass, Matrix("[0.7,0.3;1.0,0]"))
model.link(P)

Note that any routing information specified for the self-looping class will be ignored.

Mixed models

LINE also accepts models where a user has instantiated both open and closed classes. The only requirement
is that, if two classes communicate by means of a class-switching mechanism, then the two classes must
either be all closed or all open. In other words, classes in the same chain must either be both closed or open.
Furthermore, for all closed classes in the same chain, it is required for the reference station to be the same.

Class priorities

If a class has a priority, with 0 representing the highest priority, this can be specified as an additional
argument to both OpenClass and ClosedClass, e.g.,

val class2: ClosedClass = ClosedClass(model, "Class2", 5, queue, 0)

In Network models, priorities are intended as hard priorities and the only supported priority scheduling
strategy (SchedStrategy.HOL) is non-preemptive. Weight-based policies such as DPS and GPS may be
used, as an alternative, to prevent starvation of jobs in low-priority classes.

Class switching

In LINE, jobs can switch their class while they travel between nodes (including self-loops on the same node).
For example, this feature can be used to model queueing properties such as re-entrant lines in which a job
visiting a station a second time may require a different average service demand than at its first visit.

A chain defines the set of reachable classes for a job that starts in the given class r and over time changes
class. Since class switching in LINE does not allow a closed class to become open, and vice-versa, chains
can themselves be classified into open chains and closed chains, depending on the classes that compose
them.

Jobs in open classes can only switch to another open class. Similarly, jobs in closed classes can only
switch to a closed class. Thus, class switching from open to closed classes (or vice-versa) is forbidden.
More details about class-switching are given in Section 3.1.5.

38 CHAPTER 3. NETWORK MODELS

Reference station

Before we have shown that the specification of classes requires choosing a reference station. In LINE,
reference stations are properties of chains, thus if two closed classes belong to the same chain they must
have the same reference station. This avoids ambiguities in the definition of the completion point for jobs
within a chain.

For example, the system throughput for a chain is defined as the sum of the arrival rates at the reference
station for all classes in that chain. That is, the solver counts a return to the reference station as a completion
of the visit to the system. In the case of open chains, the reference station is always the Source and the
system throughput corresponds to the rate at which jobs arrive at the sink Sink, which may be seen as the
arrival rate seen by the infinite pool of jobs in the external world. If there is no class switching, each chain
contains a single class, thus per-chain and per-class performance indexes will be identical.

Reference class

Occasionally, it is possible to encounter situations where a job needs to change class while remaining inside
the same station. In this case, LINE modifies the network automatically to introduce a class-switching node
for the job to route out of the station and immediately return to it in the new class.

One complication of the approach is that, by departing the node and returning to it, the job visits
the station one additional time, affecting the visit count to the station and therefore performance metrics
such as the residence time. To cope with this issue, LINE offers a method for the class objects, called
setReferenceClass, that allows users to specify whether the visit of that class to the reference station
should be considered upon computing the residence times across the network for the chain to which the
class belongs. By default, all classes traversing the reference station are used in the visit count calculation.

3.1.4 Routing strategies

Probabilistic routing

Jobs travel between nodes according to the network topology and a routing strategy. Typically a queueing
network will use a probabilistic routing strategy (RoutingStrategy.PROB), which requires specifying
routing probabilities among the nodes. The simplest way to specify a large routing topology is to define
the routing probability matrix for each class, followed by a call to the link function. This function will
automatically add certain nodes to the network to ensure the correct class switching for jobs moving between
stations (ClassSwitch elements).

In the running case, we may instantiate a routing topology as follows:

val P: Matrix = model.initRoutingMatrix()
P.set(class1,source,queue,1.0)
P.set(class1,queue,queue,0.3); // self-loop with probability 0.3
P.set(class1,queue,delay,0.7); // transition with probability 0.7
P.set(class1,delay,sink,1.0)
P.set(class2,delay,queue,1.0); // note: closed class jobs start at delay

3.1. NETWORK OBJECT DEFINITION 39

P.set(class2,queue,delay,1.0)
model.link(P)

When used as arguments to a cell array or matrix, class, and node objects will be replaced by a correspond-
ing numerical index. Normally, the indexing of classes and nodes matches the order in which they are
instantiated in the model and one can therefore specify the routing matrices using this property. In this case,
we would have

P = model.initRoutingMatrix()
P.set(class1, Matrix("[0,1,0,0; 0,.3,.7,0; 0,0,0,1; 0,0,0,0]"))
P.set(class2, Matrix("[0,0,0,0; 0,0,1,0; 0,1,0,0; 0,0,0,0]"))
model.link(P)

Where needed, the functions return the numerical index associated with a node name, for example . Class
and node names in a network must be unique. The list of names already assigned to nodes in the network
can be obtained with the functions of the Network class.

It is also important to note that the routing matrix in the last example is specified between nodes, instead
of between just stations or stateful nodes, which means that for example elements such as the need to be
explicitly considered in the routing matrix. The only exception is that ClassSwitch elements do not need
to be explicitly instantiated in the routing matrix, provided that one uses the link function to instantiate the
topology. Note that the routing matrix assigned to a model can be printed on the screen in a human-readable
format using the printRoutingMatrix function, e.g.,

model.printRoutingMatrix()

prints

Delay [Class1] => Queue1 [Class1] : Pr=1.0
Delay [Class2] => Queue1 [Class2] : Pr=0.001
Queue1 [Class1] => Queue1 [Class1] : Pr=0.3
Queue1 [Class1] => Source [Class1] : Pr=0.7
Queue1 [Class2] => Source [Class2] : Pr=1.0
Source [Class1] => Sink [Class1] : Pr=1.0
Source [Class2] => Queue1 [Class2] : Pr=1.0
Sink [Class2] => Source [Class2] : Pr=1.0

Other routing strategies

The above routing specification style is only for models with probabilistic routing strategies between every
pair of nodes. A different style should be used for scheduling policies that do not require to explicit routing
probabilities, as in the case of state-dependent routing. Currently supported strategies include:

• Round robin (RoutingStrategy.RROBIN). This is a deterministic strategy that sends jobs to out-
going links in a cyclic order.

40 CHAPTER 3. NETWORK MODELS

• Random routing (RoutingStrategy.RAND). This is equivalent to a standard probabilistic strategy
that for each class assigns identical values to the routing probabilities of all outgoing links. When a
target is invalid its probability is kept to zero, e.g., random routing will not send a job in a closed class
to a sink.

• Join-the-Shortest-Queue (RoutingStrategy.JSQ). This is a non-probabilistic strategy that sends
jobs to the destination with the smallest total number of jobs in it (either queueing or receiving ser-
vice). If multiple stations have the same total number of jobs, then the destination is chosen at random
with equal probability.

For the above policies, the function addLink should be first used to specify pairs of connected nodes

model.addLink(queue, queue); //self-loop
model.addLink(queue, delay)

Then an appropriate routing strategy should be selected at every node, e.g.,

queue.setRouting(class1,RoutingStrategy.RROBIN)

assigns round robin among all outgoing links from the queue node.
A model could also include both classes with probabilistic routing strategies and classes that use round-

robin or other non-probabilistic strategies. To instantiate routing probabilities in such situations one should
then use, e.g.,

queue.setRouting(class1,RoutingStrategy.PROB)
queue.setProbRouting(class1, queue, 0.7)
queue.setProbRouting(class1, delay, 0.3)

where setProbRouting assigns the routing probabilities to the two links.

Routing probabilities for Source and Sink nodes

In the presence of open classes, and in mixed models with both open and closed classes, one needs only to
specify the routing probabilities out of the source. The probabilities out of the sink can all be set to zero
for all classes and destinations (including self-loops). The solver will take care of adjusting these inputs to
create a valid routing table.

Simplified definition of tandem and cyclic topologies

Tandem networks are open queueing networks with a serial topology. LINE provides functions that ease the
definition of tandem networks of stations with exponential service times. For example, the getting started
Example 1 on the M/M/1 queue illustrates a simplified way to specify a serial routing topology, i.e.,

model.link(Network.serialRouting(source,queue,sink))

3.1. NETWORK OBJECT DEFINITION 41

In a similar fashion, we can also rapidly instantiate a tandem network consisting of stations with PS and INF
scheduling as follows

Matrix lambda = new Matrix("[10,20]"); // lambda(r) - arrival rate of class r
Matrix D = new Matrix("[11,12; 21,22]"); // D(i,r) - class-r demand at station i (PS)
Matrix Z = new Matrix("[91,92;93,94]"); // Z(i,r) - class-r demand at station i (INF)
Network modelPsInf = Network.tandemPsInf(lambda,D,Z);

The above snippet instantiates an open network with two queueing stations (PS), two delay stations (INF),
and exponential distributions with the given inter-arrival rates and mean service times. The Network.tandemPs,
Network.tandemFcfs, and Network.tandemFcfsInf functions provide static constructors for net-
works with other combinations of scheduling policies, namely only PS, only FCFS, or FCFS and INF.

A tandem network with closed classes is instead called a cyclic network. Similar to tandem networks,
LINE offers a set of static constructors:

• Network.cyclicPs: cyclic network of PS queues

• Network.cyclicPsInf: cyclic network of PS queues and delay stations

• Network.cyclicFcfs: cyclic network of FCFS queues

• Network.cyclicFcfsInf: cyclic network of FCFS queues and delay stations

These functions only require replacing the arrival rate vector A by a vector N specifying the job populations
for each of the closed classes, e.g.,

// Create cyclic PS network
Matrix N = new Matrix("[2,1]"); // job populations
Matrix D = new Matrix("[[11,12],[21,22]]"); // service demands
Network modelPsInf = Network.cyclicPs(N, D);

3.1.5 Class switching

Depending on the specified probabilities, a job will be able to switch its class only among a subset of the
available classes. Each subset is called a chain. Chains are computed in LINE as the weakly connected
components of the routing probability matrix of the network when this is seen as an undirected graph.
The function model.getChains() produces the list of chains for the model, inclusive of a list of their
composing classes.

The definition of class switching in a model is integrated in the specification of the routing between
stations as described in the next subsection.

Probabilistic class switching

In models with class switching and probabilistic routing at all nodes, a routing matrix is required for each
possible pair of source and target classes. For instance, suppose that in the previous example the job in the

42 CHAPTER 3. NETWORK MODELS

closed class class2 switches into a new closed class (class3) while visiting the queue node. We can
specify this routing strategy as follows:

val class3: ClosedClass = ClosedClass(model, "Class3", 0, queue, 0)
val P: Matrix = model.initRoutingMatrix()
P.set(class1,source,queue,1.0)
P.set(class1,queue,queue,0.3); // self-loop with probability 0.3
P.set(class1,queue,delay,0.7); // transition with probability 0.7
P.set(class1,delay,sink,1.0)
P.set(class2,class3,delay,queue,1.0); // note: closed class jobs start at delay
P.set(class3,class2,queue,delay,1.0)
model.link(P)

Importantly, LINE assumes that a job switches class an instant after leaving a station, thus the perfor-
mance metrics of a class at the node refer to the class that jobs had upon arrival to that node.

Class switching with non-probabilistic routing strategies

In the presence of non-probabilistic routing strategies, such as round-robin or join-the-shortest-queue, one
may need to manually specify the details of the class switching mechanism. This can be done through
addition to the network topology of ClassSwitch nodes.

The constructor of the ClassSwitch node requires a probability matrix C such that the lement in row
r and column s is the probability that a job of class r arriving into the node switches to class s during the
visit. For example, in a 2-class model, the following node will switch all visiting jobs into class 2

// Block 1: nodes
// ...
val csnode: ClassSwitch = ClassSwitch(model, "ClassSwitch 1")
// Block 2: classes
val jobclass1: OpenClass = OpenClass(model, "Class1", 0)
val jobclass2: OpenClass = OpenClass(model, "Class2", 0)
// ...
// Block 3: topology
val C: ClassSwitchMatrix = csnode.initClassSwitchMatrix()
C.set(jobclass1, jobclass2, 1.0)
C.set(jobclass2, jobclass2, 1.0)
csnode.setClassSwitchingMatrix(C)

Note that for a network with M stations, up to M2 ClassSwitch elements may be required to implement
class-switching across all possible links, including self-loops.

Cache-based class-switching

An advanced feature of LINE available for example within the Cache node, is that the class-switching
decision can dynamically depend on the state of the node (e.g., cache hit/cache miss). However, in order to
statically determine chains, LINE requires that every class-switching node declares the pair of classes that
can potentially communicate with each other via a switch. This is called the class-switching mask and it is
automatically computed. The boolean matrix returned by the model.getClassSwitchingMask function

3.1. NETWORK OBJECT DEFINITION 43

provides this mask, which has an entry in row r and column s set to true only if jobs in class r can switch
into class s at some node in the network.

Upon cache hit or cache miss, a job in transit is switched to a user-specified class, as specified by the
setHitClass and setMissClass, so that it can be routed to a different destination based on whether it
found the item in the cache or not. The setRead function allows the user to specify a discrete distribution
(e.g., Zipf, DiscreteSampler) for the frequency at which an item is requested. For example,

val refModel: Zipf = Zipf(0.5,nitems)
cacheNode.setRead(initClass, refModel)
cacheNode.setHitClass(initClass, hitClass)
cacheNode.setMissClass(initClass, missClass)

Here initClass, hitClass, and missClass can be either open or closed instantiated as usual with the
OpenClass or ClosedClass constructors.

3.1.6 Service and inter-arrival time processes

A number of statistical distributions are available to specify job service times at the stations and inter-arrival
times from the station. The class Markovian offers distributions that are analytically tractable, which
are defined using absorbing Markov chains consisting of one or more states (phases) and called phase-type
distributions. They include as special cases the following distributions:

• Exponential distribution: Exp(λ), where λ is the rate of the exponential

• n-phase Erlang distribution: Erlang(α, n), where α is the rate of each of the n exponential phases

• 2-phase hyper-exponential distribution: HyperExp(p, λ1, λ2), that returns an exponential with rate
λ1 with probability p, and an exponential with rate λ2 otherwise.

• n-phase hyper-exponential distribution: HyperExp(p, λ), that builds a n-phase hyper-exponential
from a rate vector λ = [λ1, . . . , λn] and phase selection probabilities p = [p1, . . . , pn].

• 2-phase Coxian distribution: Coxian(µ1, µ2, ϕ1), which assigns phases µ1 and µ2 to the two rates,
and completion probability from phase 1 equal to ϕ1 (the probability from phase 2 is ϕ2 = 1.0).

• n-phase Coxian distribution: Coxian(µ, ϕ), which builds an arbitrary Coxian distribution from a
vector µ = [µ1, . . . , µn] of n rates and a completion probability vector ϕ = [ϕ1, . . . , ϕn] with ϕn =
1.0.

• n-phase acyclic phase-type distribution: APH(α, T), which defines an acyclic phase-type distribution
with initial probability vector α = [α1, . . . , αn] and transient generator T .

For example, given mean µ = 0.2 and squared coefficient of variation SCV=10, where SCV=variance/µ2,
we can assign to a node a 2-phase Coxian service time distribution with these moments as

44 CHAPTER 3. NETWORK MODELS

queue.setService(class2, Cox2.fitMeanAndSCV(0.2,10.0))

where Cox2 is a static class to fit 2-phase Coxian distributions. Inter-arrival time distributions can be in-
stantiated in a similar way, using setArrival instead of setService on the Source node. For example,
if the Source is node 3 we may assign the inter-arrival times of class 2 to be exponential with mean 0.1 as
follows

source.setArrival(class2, Exp.fitMean(0.1))

Is it also possible to plot the structure of a phase-type distribution using Markovian.plot static
method.

Non-Markovian distributions are also available, but typically they can restrict the available solvers to the
JMT simulator. They include the following distributions:

• Deterministic distribution: Det(µ) assigns probability 1.0 to the value µ.

• Uniform distribution: Uniform(a, b) assigns uniform probability 1/(b− a) to the interval [a, b].

• Gamma distribution: Gamma(α, k) assigns a gamma density with shape α and scale k.

• Pareto distribution: Pareto(α, k) assigns a Pareto density with shape α and scale k.

Lastly, we discuss two special distributions. The Disabled distribution can be used to explicitly forbid
a class to receive service at a station. This may be useful to declare in models with sparse routing matrices
to debug the model specification. Performance metrics for disabled classes will be set to Double.NaN.

Conversely, the Immediate class can be used to specify instantaneous service (zero service time). Nor-
mally, solvers will replace zero service times with small positive values (ε =GlobalConstants.FineTol).

Fitting a distribution

The fitMeanAndSCV function is available for all distributions that inherit from the Markovian class. This
function provides exact or approximate matching of the first two moments, depending on the theoretical
constraints imposed by the distribution. For example, an Erlang distribution with SCV=0.75 does not exist,
because in a n-phase Erlang it must be SCV=1/n. In a case like this, Erlang.fitMeanAndSCV(1,0.75)
will return the closest approximation, e.g., a 2-phase Erlang (SCV=0.5) with unit mean. The Erlang dis-
tribution also offers a function fitMeanAndOrder(µ, n), which instantiates a n-phase Erlang with given
mean µ.

In distributions that are uniquely determined by more than two moments, fitMeanAndSCV chooses a
particular assignment of the residual degrees of freedom other than mean and SCV. For example, HyperExp
depends on three parameters, therefore it is insufficient to specify mean and SCV to identify the distribution.
Thus, HyperExp.fitMeanAndSCV automatically chooses to return a probability of selecting phase 1 equal
to 0.99. Compared to other choices, this particular assignment corresponds to a higher probability mass
in the tail of the distribution. HyperExp.fitMeanAndSCVBalanced instead assigns p in a two-phase
hyper-exponential distribution so that p/µ1 = (1− p)/µ2.

3.1. NETWORK OBJECT DEFINITION 45

Inspecting and sampling a distribution

To verify that the fitted distribution has the expected mean and SCV it is possible to use the getMean and
getSCV functions, e.g.,

val dist: Exp = Exp(1)
System.out.println(dist.getMean())
System.out.println(dist.getSCV())

prints

1.0
1.0

Moreover, the sample function can be used to generate values from the obtained distribution, e.g. we can
generate 3 samples as

System.out.println(Arrays.toString(dist.sample(3)));

The evalCDF and evalCDFInterval functions return the cumulative distribution function at the specified
point or within a range, e.g.,

System.out.println(dist.evalCDFInterval(2, 5));
System.out.println(dist.evalCDF(5) - dist.evalCDF(2));

For more advanced uses, the distributions of the Markovian class also offer the possibility to obtain
the standard (D0, D1) representation used in the theory of Markovian arrival processes by means of the
getRepresentation function [5].

Load-dependent service

A queueing station i is called load-dependent whenever its service rate is a function of the number ni

of resident jobs at the station, summed across the ones in service and the ones in the waiting buffer. For
example, a multi-server station with c identical servers, each with processing rate µ, may be shown to behave
similarly to a single-server load-dependent station where the service rate is µ(ni) = µα(ni) = µmin(ni, c).

LINE presently supports limited load-dependence [11], meaning that it is possible to specify the form
of the load-dependent service up to a finite range of ni. As such, the support is currently limited to closed
models, which are guaranteed to have a finite population at all times.

To specify a load-dependence service for a queueing station over the range ni ∈ [1, N] it is sufficient to
call the setLoadDependence method, passing a vector of size N in its input with the scaling factor values
for each ni. For example, to instantiate a c-server node we write

val LD: Matrix = Matrix(1, N)
for (int i=0; i<N; i++) {

LD.set(i, Math.min(i + 1, c))
}
queue.setLoadDependence(LD)

46 CHAPTER 3. NETWORK MODELS

where the i-th element of the vector argument of setLoadDependence is the scaling factor α(ni). It is
assumed by default that α(0) = 1.

Class-dependent service

A generalization of load-dependent service is class-dependent service, where the service rate is now a func-
tion of the vector ni = [ni,1, . . . , ni,R], where ni,r is the current number of class-r jobs at station i.

LINE supports class-dependence in the MVA solver, provided that this is specified as a function handle.
The solver implicitly assumes that the function is smooth and defined also for fractional values of ni,r. For
example, in a two-class model we may write

// Class-dependent service using lambda expression
queue.setClassDependence(ni -> Math.min(ni[1], c));

applies a multiserver-type only to class-2 jobs, but not to the others.

Switchover times

In multiclass models, queueing stations alternate over time the processing of jobs of different classes. In
some real-world situations, overheads may arise when a server needs to be reconfigured to process a different
class of service. Such overheads are referred to as switchover times.

LINE supports switchover times in queueing stations. For example, to configure the overhead to begin
processing jobclass2 jobs after jobclass1 we may write

queue.setSwitchover(jobclass1, jobclass2, Exp(1))

A special case arises when the station uses (deterministic) polling scheduling. In this situation, the switchover
time specifies the time for moving from the input buffer of class i to the input buffer of class i + 1 mod R,
where R is the total number of input classes to the queue. Using this fact, we need only to specify the
switchover time after each class, e.g., the switchover time to begin processing jobclass2 jobs after jobclass1
is set as

queue.setSwitchover(jobclass1, Exp(1))

Temporal dependent processes

It is sometimes useful to specify the statistical properties of a time series of service or inter-arrival times, as
in the case of systems with short- and long-range dependent workloads. When the model is stochastic, we
refer to these as situations where one specifies a process, as opposed to only specifying the distribution of
the service or inter-arrival times. In LINE processes include the 2-state Markov-modulated Poisson process
(MMPP2) and empirical traces read from files (Replayer).

For the latter, LINE assumes that empirical traces are supplied as text files (ASCII), formatted as a
column of numbers. Once specified, the Replayer object can be used as any other distribution. This means

3.2. INTERNALS 47

that it is possible to run a simulation of the model with the specified trace. However, analytical solvers will
require tractable distributions from the Markovian class.

3.2 Internals

In this section, we discuss the internal representation of the Network objects used within the LINE solvers.
By applying changes directly to this internal representation it is possible to considerably speed up the se-
quential evaluation of models.

3.2.1 Representation of the model structure

For efficiency reasons, once a user requests to solve a Network, LINE calls internally generate a static
representation of the network structure using the refreshStruct function. This function returns a repre-
sentation object that is then passed on to the chosen solver to parameterize the analysis.

The representation used within LINE is the NetworkStruct class, which describes an extended multi-
class queueing network with class-switching and acyclic phase-type (APH) service times. APH generalizes
known distributions such as Coxian, Erlang, Hyper-Exponential, and Exponential. The representation can
be obtained as follows

val sn: NetworkStruct = model.getStruct()

The class provides idiomatic Kotlin access to the internal representation with improved type safety and
nullable annotations. Table 3.2 lists the main properties available in the Kotlin API.

Table 3.2: NetworkStruct static properties (JAR version)

Field Type Description
nstations int Number of stations in the network
nstateful int Number of stateful nodes in the network
nnodes int Number of nodes in the network
nclasses int Number of classes in the network
nclosedjobs int Total number of jobs in closed classes
nchains int Number of chains in the network
nodenames List〈String〉 Name of node i (accessed as

nodenames.get(i))
classnames List〈String〉 Name of class r (accessed as

classnames.get(r))
nodetype List〈NodeType〉 Type of node i (e.g., NodeType.Queue)
njobs Matrix Number of jobs in class r (infinity for open classes)
nservers Matrix Number of servers at station i
classprio Matrix Priority of class r (0 = highest priority)
connmatrix Matrix true if node i can route jobs to node j
isstation Matrix true if node i is a station
isstateful Matrix true if node i is a stateful node
isstatedep Matrix true if node i has state-dependent section (s = 0: input,

s = 1: service, s = 2: routing)
Continued on next page

48 CHAPTER 3. NETWORK MODELS

Table 3.2 – Continued from previous page
Field Type Description
sched Map〈Station,

SchedStrategy〉
Scheduling strategy at station i (e.g.,
SchedStrategy.PS)

schedparam Matrix Parameter for class r scheduling strategy at station i

mu Map〈Station,
Map〈JobClass, Matrix〉〉

Service or arrival rate in phase k for class r at station
i, with mu = NaN if Disabled and mu = 107 if
Immediate

phi Map〈Station,
Map〈JobClass, Matrix〉〉

Completion probability in phase k for class r at station i

pie Map〈Station,
Map〈JobClass, Matrix〉〉

Entry probability in phase k for class r at station i

proc Map〈Station,
Map〈JobClass,
MatrixCell〉〉

Matrix representation of the class r service process at sta-
tion i. For Markovian distributions, this follows the stan-
dard (D0, D1) representation of Markovian Arrival Pro-
cesses"

proctype Map〈Station,
Map〈JobClass,
ProcessType〉〉

Service or arrival process type at station i for class r (e.g.,
ProcessType.HYPEREXP)

phases Matrix Number of phases for service process of class r at station i
refstat Matrix Index of reference station for class r
refclass Matrix Index of reference class for chain c

nodeparam Map〈Node, NodeParam〉 Parameters for local variable instantiation at stateful node i
nodeToStation Matrix Map from node index to station index (-1 if not a station)
nodeToStateful Matrix Map from node index to stateful index (-1 if not stateful)
stationToNode Matrix Map from station index to corresponding node index
stationToStateful Matrix Map from station index to stateful index (-1 if not stateful)
statefulToNode Matrix Map from stateful index to corresponding node index
statefulToStation Matrix Map from stateful index to station index (-1 if not a station)
droprule Map〈Station,

Map〈JobClass,
DropStrategy〉〉

Drop rule for class r at station i (e.g.,
DropStrategy.WaitingQueue)

routing Map〈Node, Map〈JobClass,
RoutingStrategy〉〉

Routing strategy for class r upon departing node i (e.g.,
RoutingStrategy.JSQ)

rtorig Map〈JobClass,
Map〈JobClass, Matrix〉〉

Probability matrix specified by the user at model definition
time for class switch from class r to s

lst Map〈Station,
Map〈JobClass,
SerializableFunction〉〉

Laplace-Stieltjes transform of the service or arrival distri-
bution for class r at station i

state Map〈StatefulNode,
Matrix〉

Current state of stateful node i. May be initially empty and
updated by solver during execution

stateprior Map〈StatefulNode,
Matrix〉

Prior probability for states of node i

space Map〈StatefulNode,
Matrix〉

The state space for stateful node i. May be initially empty
and updated by solver during execution

sync Map〈Integer, Sync〉 Data structure specifying a synchronization among nodes
gsync Map〈Integer, GlobalSync〉 Data structure specifying a global synchronization among

nodes
cdscaling Map〈Station,

SerializableFunction〉
Class-dependent scaling when station i contains nir jobs
in class r

phasessz Matrix Number of state vector elements used to describe phase
phaseshift Matrix Position shift to read phase element in state

Continued on next page

3.2. INTERNALS 49

Table 3.2 – Continued from previous page
Field Type Description
nvars Matrix Number of local state variables for stateful node i. Posi-

tion r describes state variables for class-r service; posi-
tion r = nclasses + s for class-s routing; positions after
2× nclasses are used for class-independent variables

isslc Matrix true if class r is a self-looping class
fj Matrix true if forked tasks from fork node f join at node j
lldscaling Matrix Load-dependent scaling when station i contains ni jobs,

including the ones in service
varsparam Matrix Variable parameters for stateful nodes
rtfun SerializableFunction〈Pair〈Map〈Node,

Matrix〉, Map〈Node,
Matrix〉〉, Matrix〉

State-dependent routing table function given initial and fi-
nal state Maps. Returns routing probabilities as in rt

The Kotlin API provides the same computed properties as the Java version with idiomatic Kotlin data
types and improved type safety.

Table 3.3: NetworkStruct computed properties (JAR version)

Field Type Description
chains Matrix true if class r is in chain c, or false otherwise
classcap Matrix Maximum buffer capacity available to class r at station i
cap Matrix Total capacity at station i
rates Matrix Service rate of class r at station i (or arrival rate if i is a)
scv Matrix Squared coefficient of variation of class r service times at station i (or

inter-arrival times if station i is a)
visits Map〈Integer,

Matrix〉
Number of visits that a job in chain c pays to stateful node i in class r
(accessed as visits.get(c))

nodevisits Map〈Integer,
Matrix〉

Number of visits that a job in chain c pays to node i in class r (accessed
as nodevisits.get(c))

rt Matrix Probability of routing from stateful node i to j, switching class from r to
s where idxir = (i− 1)× nclasses+ r

rtnodes Matrix Same as rt, but i and j are nodes, not necessarily stateful ones
inchain Map〈Integer,

Matrix〉
Indexes of classes in chain c (accessed as inchain.get(c))

sync Map〈Integer, Sync〉 Data structure specifying a synchronization s among nodes
space Map〈StatefulNode,

Matrix〉
The t-th state in the state space (or a portion thereof). This field may be
initially empty and updated by the solver during execution

state Map〈StatefulNode,
Matrix〉

Current state of stateful node i. This field may be initially empty and
updated by the solver during execution

csmask Matrix true if class r can switch into class s at some node

For advanced nodes, such as Cache and Transition, additional parameters are specified under the nodeparam
cell array for the corresponding node. Tables 3.4 and 3.5 illustrate the Kotlin implementation of these pa-
rameters.

Table 3.4: TransitionNodeParam fields (Kotlin version)

Field Type Description
enabling List〈Matrix〉 Enabling condition matrices for modes at transition node

Continued on next page

50 CHAPTER 3. NETWORK MODELS

Table 3.4 – Continued from previous page
Field Type Description
inhibiting List〈Matrix〉 Inhibiting condition matrices for modes at transition node
modenames List〈String〉 Names of modes at transition node
nmodes int Number of modes for transition node
nmodeservers Matrix Number of servers for each mode
timing List〈TimingStrategy〉 Firing timing strategy for each mode (e.g.,

TimingStrategy.IMMEDIATE)
firingprocid Map〈Mode,

ProcessType〉
Firing process type for each mode (e.g.,
ProcessType.HYPEREXP)

firingproc Map〈Mode,
MatrixCell〉

Matrix representation of firing process for each mode

firingpie Map〈Mode, Matrix〉 Entry probabilities for firing process phases
firingphases Matrix Number of phases for firing process of each mode
firing List〈Matrix〉 Firing output matrices for each mode
firingprio Matrix Firing priority for each mode
fireweight Matrix Firing weight for each mode

Table 3.5: CacheNodeParam fields (Kotlin version)

Field Type Description
accost Array〈Array〈Matrix〉〉 Access cost matrices for moving items between lists
hitclass Matrix Class switching specification for cache hits
itemcap Matrix Item capacity for each list
missclass Matrix Class switching specification for cache misses
nitems Int Number of items in the cache
pread Map〈Int,

List〈Double〉〉
Probability distributions for reading items by class

replacestrat ReplacementStrategy Replacement policy (e.g., ReplacementStrategy.LRU)
actualhitprob Matrix Actual hit probabilities (computed)
actualmissprob Matrix Actual miss probabilities (computed)

As shown in the tables, internally to LINE there is an explicit differentiation between properties of
nodes, stations, and stateful nodes. This distinction has impact in particular over routing and class-switching
mechanisms, and also allows solvers to better differentiate between different kinds of nodes.

In some cases, one may want to access some properties of nodes that are contained in NetworkStruct
fields that are however referenced by station or stateful node index. To help this and similar situations, the
NetworkStruct class also provides static methods to quickly convert the indexing of nodes, stations, and
stateful nodes, which is used in referencing its data structures:

• nodeToStateful

• nodeToStation

• stationToNode

• stationToStateful

• statefulToNode

3.3. DEBUGGING AND VISUALIZATION 51

Figure 3.1: jsimgView function

As an example, we can determine the portion of the nodevisits field that refers to stateful nodes in chain
c = 1 as follows

int c = 0; // class index (0-based)
Matrix V = Matrix.zeros(sn.nstateful, 1);
NetworkStruct sn = model.getStruct(); // NetworkStruct object
for (int ind = 0; ind < sn.nnodes; ind++) {

if (sn.isstateful[ind]) {
int isf = sn.nodeToStateful[ind];
V.set(isf, 0, sn.nodevisits[c].get(ind, 1));

}
}

3.3 Debugging and visualization

JSIMgraph is the graphical simulation environment of the JMT suite. LINE can export models to this
environment for visualization purposes using the command

model.jsimgView()

An example is shown in Figure 3.1. Using a related function, jsimwView, it is also possible to export the
model to the JSIMwiz environment, which offers a wizard-based interface.

52 CHAPTER 3. NETWORK MODELS

Another way to debug a LINE model is to transform it into a graph object, i.e., Another way to debug a
LINE model is to transform it into a graph object, i.e.,

// Display graph edges
Graph G = model.getGraph();
System.out.println("Nodes: " + G.getNodes());
System.out.println("Edges: " + G.getEdges());

3.4 Model import and export

LINE offers a number of scripts to import external models into Network object instances that can be ana-
lyzed through its solvers. The available scripts are as follows:

• JMT2LINE imports a JMT simulation model (.jsimg or .jsimw file) instance.

This script requires in input the filename and desired model name, and returns a single output, e.g.,

Network sn = JMT2LINE.load("examples/data/JMT/jmt_example.jsimg", "Mod1");

where sn is an instance of the class.

3.4.1 Supported JMT features

Table 3.4.1 lists the JSIMgraph/JSIMwiz model features supported by the JMT2LINE transformation. We
indicate as “Fully” supported a feature that is supported in the import and such that the resulting model can
be solved in LINE using at least SolverJMT. A feature with “Partial” support implies that some core aspects
of this feature available in JSIM are not available in LINE.

A few notes are needed to clarify the entries with partial support:

• Fork and Join are supported with their default policies. Advanced policies, such as partial joins or
setting a distribution for the forked tasks on each output link, are not supported yet.

• a single Sink and a single Source can be instantiated in a LINE model, whereas there is no such
constraint in JMT.

Table 3.6: Supported JSIM features for automated model import and analysis

JMT Feature Support Notes
Distributions Full Phase-Type, Burst (MAP), Burst (MMPP2), Deterministic, Disabled, Exponential, Er-

lang, Gamma, Hyperexponential, Coxian, Logistic, Pareto, Uniform, Zero Service Time,
Replayer, Weibull

Classes Full Open class, Closed class, Class priorities
Metrics Full Number of customers, Residence Time, Throughput, Response Time, Throughput per

sink, Utilization, Arrival Rate
Continued on next page

3.4. MODEL IMPORT AND EXPORT 53

Table 3.6 – Continued from previous page
JMT Feature Support Notes
Nodes Full Finite Capacity Region, ClassSwitch, Place, Delay, Logger, Queue, Router, Transition
Routing Full Random, Probabilities, Round Robin, Join the Shortest Queue
Mechanisms Full Polling, Switchover times
Scheduling Full FCFS, HOL, LCFS, LCFS-PR, SIRO (Random), SJF, SEPT, LJF, LEPT, PS, DPS, GPS,

PS Priority, DPS Priority, GPS Priority
Nodes Partial Fork, Join, Source, Sink
Distributions No Burst (General), Normal
Nodes No Scaler, Semaphore
Routing No Shortest Response Time, Least Utilization, Fastest Service, Load Dependent, Class

Switch Routing
Metrics No Drop rate, Response time per sink, Power
Scheduling No LPS, EDD, EDF, TBS, SRPT, QBPS
Mechanisms No Load Dependence, Retrial, Impatience, Soft deadlines, Parallelism, Heterogeneous

servers, Server Compatibilities, Setup times, Polling, Switchover times

Chapter 4

Analysis methods

4.1 Performance metrics

As discussed earlier, LINE supports a set of steady-state and transient performance metrics. Table 4.1
summarizes the definition of the associated random variables. For each metric, one or more analysis types
may be available, which are extensively discussed in the next sections.

Table 4.1: Performance metrics
Metric Acronym Description
Queue-length QLen Number of jobs of class r (or chain-c) residing at a node i

Utilization Util Utilization of class-r (or chain-c) jobs at node i, scaled in [0,1] for multi-
server nodes, equal to QLen at infinite server nodes

Response time RespT Time that a class-r (or chain-c) jobs spends for a single visit at node i

Residence time ResidT Cumulative time that a class-r (or chain-c) jobs spends across all visits at
node i

Arrival rate ArvR Arrival rate of class-r (or chain-c) jobs at node i

Throughput Tput Throughput of class-r (or chain-c) jobs at node i

System Response time SysRespT For an open chain c, this is the time from leaving the source to arriving at
the sink for any class in the chain. For a closed chain c, this is the interval
of time between two successive visits to the reference station in any two
completing classes within the chain.

System Throughput SysTput For an open chain c, this is the departure rate towards the sink for any class
in the chain. For a closed chain c, this is the rate of arrival of completing
classes in the chain at the reference station.

54

4.2. STEADY-STATE ANALYSIS 55

4.2 Steady-state analysis

4.2.1 Station average performance

LINE decouples network specification from its solution, allowing to evaluate the same model with multiple
solvers. Model analysis is carried out in LINE according to the following general steps:

Step 1: Definition of the model. This proceeds as explained in the previous chapters.

Step 2: Instantiation of the solver(s). A solver is an instance of the Solver class. LINE offers multiple
solvers, which can be configured through a set of common and individual solver options. For example,

val solver: SolverJMT = SolverJMT(model)

returns a handle to a simulation-based solver based on JMT, configured with default options.

Step 3: Solution. Finally, this step solves the network and retrieves the concrete values for the performance
indexes of interest. This may be done as follows, e.g.,

// QN(i,r): mean queue-length of class r at station i
val QN: Matrix = solver.avgQLen()
// UN(i,r): utilization of class r at station i
val UN: Matrix = solver.avgUtil()
// RN(i,r): mean response time of class r at station i (per visit)
val RN: Matrix = solver.avgRespT()
// TN(i,r): mean throughput of class r at station i
val TN: Matrix = solver.avgTput()
// AN(i,r): mean arrival rate of class r at station i
val AN: Matrix = solver.avgArvR()
// WN(i,r): mean residence time of class r at station i (summed on visits)
val WN: Matrix = solver.avgResidT()

Alternatively, all the above metrics may be obtained in a single method call as

SolverResults results = solver.avg();
Matrix QN = results.QN;
Matrix UN = results.UN;
Matrix RN = results.RN;
Matrix TN = results.TN;
Matrix AN = results.AN;
Matrix WN = results.WN;

In the methods above, LINE assigns station and class indexes (e.g., i, r) in order of creation in order of
creation of the corresponding station and class objects. However, large models may be easier to debug by
checking results using class and station names, as opposed to indexes. This can be done either by requesting
LINE to build a table with the result

val avgTable: AvgTable = solver.avgTable()

56 CHAPTER 4. ANALYSIS METHODS

which however tends to be a rather slow data structure to use in case of repeated invocations of the solver,
or by indexing the matrices returned by avg using the model objects. That is, if the first instantiated node
is queue with name MyQueue and the second instantiated class is cclass with name MyClass, then the
following commands are equivalent

QN.get(0, 1); // 0-based indexing
QN.get(queue, cclass); // object-based indexing
QN.get(model.getStationIndex("MyQueue"), model.getClassIndex("MyClass"));

Similar methods are defined to obtain aggregate performance metrics at chain level at each station, namely
avgQLenChain for queue-lengths, avgUtilChain for utilizations, avgRespTChain for response times,
avgTputChain for throughputs, and the avgChain method to obtain all the previous metrics.

4.2.2 Station response time distribution

SolverFluid supports the computation of response time distributions for individual classes through the
getCdfRespT function. The function returns the response time distribution for every station and class.

SolverFluid solver = new SolverFluid(model);
DistributionResult FC = solver.cdfRespT();

4.2.3 System average performance

LINE also allows users to analyze models for end-to-end performance indexes such a system throughput
or system response time. However, in models with class switching the notion of system-wide metrics can
be ambiguous. For example, consider a job that enters the network in one class and departs the network
in another class. In this situation one may attribute system response time to either the arriving class or the
departing one, or attempt to partition it proportionally to the time spent by the job within each class. In
general, the right semantics depends on the aim of the study.

LINE tackles this issue by supporting only the computation of system performance indexes by chain,
instead than by class. In this way, since a job switching from a class to another remains by definition in
the same chain, there is no ambiguity in attributing the system metrics to the chain. The solver functions
avgSys and avgSysTable return system response time and system throughput per chain as observed: (i)
upon arrival to the sink, for open classes; (ii) upon arrival to the reference station, for closed classes.

In some cases, it is possible that a chain visits multiple times the reference station before the job com-
pletes. This also affects the definition of the system averages, since one may want to avoid counting each
visit as a completion of the visit to the system. In such cases, LINE allows users to specify which classes of
the chain can complete at the reference station. For example, in the code below we require that a job visits
reference station 1 twice, in classes 1 and 2, but completes at the reference station only when arriving in
class 2. Therefore, the system response time will be counted between successive passages in class 2.

ClosedClass class1 = new ClosedClass(model, "ClosedClass1", 1, queue, 0);

4.3. SPECIFYING STATES 57

ClosedClass class2 = new ClosedClass(model, "ClosedClass2", 0, queue, 0);

class1.setCompletes(false);

// 2-classes routing matrix
Matrix[][] P = new Matrix[2][2];
P[0][0] = Matrix.create(new double[][]{{0,1},{0,0}}); // routing within class 1
P[0][1] = Matrix.create(new double[][]{{0,0},{1,0}}); // routing from class 1 to class 2
P[1][0] = Matrix.create(new double[][]{{0,0},{1,0}}); // routing within class 2
P[1][1] = Matrix.create(new double[][]{{0,1},{0,0}}); // routing from class 2 to class 2

model.link(P);

Note that the completes property of a class always refers to the reference station for the chain.

4.3 Specifying states

In some analyses it is important to specify the state of the network, for example to assign the initial position
of the jobs in a transient analysis. We thus discuss the support in LINE for state modeling.

4.3.1 Station states

We begin by explaining how to specify a state s0 for a station. For example, it is not supported for shortest
job first (SchedStrategy.SJF) scheduling, in which state must include the service time samples for the
jobs and it is therefore a continuous quantity.

Suppose that the network has R classes and that service distributions are phase-type, i.e., that they inherit
from Markovian. Let Kr be the number of phases for the service distribution in class r at a given station.
Then, we define three types of state variables:

• cj : class of the job waiting in position j ≤ b of the buffer, out of the b currently occupied positions. If
b = 0, then the state vector is indicated with a single empty element c1 = 0.

• kj : service phase of the job waiting in position j ≤ b of the buffer, out of the b currently occupied
positions.

• nr: total number of jobs of class r in the station

• br: total number of jobs of class r in the station’s buffer

• srk: total number of jobs of class r running in phase k in the server

Here, by phase we mean the number of states of a distribution of class Markovian. If the distribution is not
Markovian, then there is a single phase. With these definitions, the table below illustrates how to specify
in LINE a valid state for a station depending on its scheduling strategy. There, S is the number of servers
of the queueing station. All state variables are non-negative integers. The SchedStrategy.EXT policy is

58 CHAPTER 4. ANALYSIS METHODS

Table 4.2: State descriptors for Markovian scheduling policies
Sched. strategy Station state vector State condition
EXT [Inf, s11, ..., s1K1 , ..., sR1, ..., sRKR

]
∑

k srk = 1, ∀r
FCFS, HOL, LCFS [cb, ..., c1, s11, ..., s1K1 , ..., sR1, ..., sRKR

]
∑

r

∑
k srk = S

LCFSPR [cb, kb, ..., c1, k1, s11, ..., s1K1 , ..., sR1, ..., sRKR
]

∑
r

∑
k srk = S

SEPT, SIRO [b1, ..., bR, s11, ..., s1K1 , ..., sR1, ..., sRKR
]

∑
r

∑
k srk = S

PS, DPS, GPS, INF [s11, ..., s1K1 , ..., sR1, ..., sRKR
] None

used for the Source node, which may be seen as a special station with an infinite pool of jobs sitting in the
buffer and a dedicated server for each class r = 1, ..., R.

States can be manually specified or enumerated automatically. LINE library functions for handling and
generating states are as follows:

• State.fromMarginal: enumerates all states that have the same marginal state [n1, n2, ..., nR].

• State.fromMarginalAndRunning: restricts the output of State.fromMarginal to states with
given number of running jobs, irrespectively of the service phase in which they currently run.

• State.fromMarginalAndStarted: restricts the output of State.fromMarginal to states with
given number of running jobs, all assumed to be in service phase k = 1.

• State.fromMarginalBounds: similar to State.fromMarginal, but produces valid states be-
tween given minimum and maximum value of the number of resident jobs.

• State.toMarginal: extracts marginal statistics from a state, such as the total number of jobs in a
given class that are running at the station in a certain phase.

Note that if a function call returns an empty state ([]), this should be interpreted as an indication that no
valid state exists that meets the required criteria. Often, this is because the state supplied in input is invalid.

Example

We consider the example network in . We look at the state of station 3, which is a multi-server FCFS station.
There are 4 classes all having exponential service times except class 2 that has Erlang-2 service times. We
are interested to states with 2 running jobs in class 1 and 1 in class 2, and with 2 jobs, respectively of classes
3 and 4, waiting in the buffer. We can automatically generate this state space, which we store in the space
variable, as:

val space = State.fromMarginalAndRunning(model, 2, intArrayOf(2,1,1,1), intArrayOf(2,1,0,0))

4.3. SPECIFYING STATES 59

Here, each row of space corresponds to a valid state. The argument gives the number of jobs in the node
for the 4 classes, while gives the number of running jobs in each class. This station has four valid states,
differing on whether the class-2 job runs in the first or in the second phase of the Erlang-2 and on the relative
position of the jobs of class 3 and 4 in the waiting buffer.

To obtain states where the jobs have just started running, we can instead use

val space = State.fromMarginalAndStarted(model, 2, intArrayOf(2,1,1,1), intArrayOf(2,1,0,0))

We see that the above state space restricted the one obtained with State.fromMarginalAndRunning to
states where the job in class 1 is always in the first phase.

If we instead remove the specification of the running jobs, we can use State.fromMarginal to gener-
ate all possible combinations of states depending on the class and phase of the running jobs. In the example,
this returns a space of 20 possible states.

val space = State.fromMarginal(model, 2, intArrayOf(2,1,1,1))

Assigning a prior to an initial state

It is possible to assign the initial state to a station using the setState function on that station’s object.
LINE offers the possibility to specify a prior probability on the initial states, so that if multiple states have a
non-zero prior, then the solver will need to solve an independent model using each one of those initial states,
and then carry out a weighting of the results according to the prior probabilities. The default is to assign
a probability 1.0 to the first specified state. The functions setStatePrior and getStatePrior can be
used to check and change the prior probabilities for the initial states specified for a station or stateful node.

4.3.2 Network states

A collection of states that are valid for each station is not necessarily valid for the network as a whole. For
example, if the sum of jobs of a closed class exceeds the population of the class, then the network state would
be invalid. To identify these situations, LINE requires to specify the initial state of a network using functions
supplied by the Network class. These functions are initFromMarginal, initFromMarginalAndRunning,
and initFromMarginalAndStarted. They require a matrix n with elements (i, r) specifying the total
number of resident class-r jobs at node i and the latter two require a matrix s with elements (i, r) with
the number of running (or started) class-r jobs at node i. The user can also manually verify if the supplied
network state is going to be valid using State.isValid.

It is also possible to request LINE to automatically identify a valid initial state, which is done using the
initDefault function available in the Network class. This is going to select a state where:

• no jobs in open classes are present in the network;

• jobs in closed classes all start at their reference stations;

60 CHAPTER 4. ANALYSIS METHODS

• the servers at each reference station are occupied by jobs of in class order, i.e., jobs in the firstly
created class are assigned to the server, then spare server are allocated to jobs in the second class, and
so forth;

• service or arrival processes are initialized in phase 1 for each job;

• if the scheduling strategy requires it, jobs are ordered in the buffer by class, with the firstly created
class at the head and the lastly created class at the tail of the buffer.

The initFromAvgQLen method is a wrapper for initFromMarginal to initialize the system as close
as possible to the average steady-state distribution of the network. Since averages are typically not integer-
valued, this function rounds the average values to the nearest integer and adjusts the result to ensure feasi-
bility of the initialization.

4.3.3 Initialization of transient classes

Because of class-switching, it is possible that a class r with a non-empty population at time t = 0 becomes
empty at some positive time t′ > t without ever being visited again by any job. LINE allows users to place
jobs in transient classes and therefore it will not trigger an error in the presence of this situation. If a user
wishes to prohibit the use of a class at a station, it is sufficient to specify that the corresponding service
process uses the Disabled distribution.

Certain solvers may incur problems in identifying that a class is transient and in setting to zero its steady-
state measures. For example, the JMT solver uses a heuristic whereby a class is considered transient if it has
fewer samples than jobs initially placed in the corresponding chain the class belongs to. For such classes,
JMT will set the values of steady-state performance indexes to zero.

4.3.4 State space generation

As discussed in Example 3, the state space of a model can be obtained by either invoking model.stateSpace()
or solver.stateSpace() on an instant of the CTMC solver, where the latter returns the state space
cached during the solution of the CTMC.

LINE supports two state space generation methods, configurable using the option options.config.state_-
space_gen of the CTMC solver. Details may be found in Table 5.2.2.

4.4 Transient analysis

So far, we have seen how to compute steady-state average performance indexes, which are given by

E[n] = lim
t→+∞

E[n(t)]

where n(t) is an arbitrary performance index, e.g., the queue-length of a given class at time t.

4.4. TRANSIENT ANALYSIS 61

We now consider instead the computation of the quantity E[n(t)|s0], which is the transient average
of the performance index, conditional on a given initial system state s0. Compared to n(t), this quantity
averages the system state at time t across all possible evolutions of the system from state s0 during the t
time units, weighted by their probability. In other words, we observe all possible stochastic evolutions of
the system from state s0 for t time units, recording the final values of n(t) in each trajectory, and finally
average the recorded values at time t to obtain E[n(t)|s0].

4.4.1 Computing transient averages

The computation of transient metrics proceeds similarly to the steady-state case. We first obtain the handles
for transient averages:

Network model = Gallery.gallery_cqn(2); // closed single class queueing network
TranHandles handles = model.getTranHandles();
Matrix Qt = handles.Qt;
Matrix Ut = handles.Ut;
Matrix Tt = handles.Tt;

After solving the model, we will be able to retrieve both steady-state and transient averages as follows

TranResults results = new SolverCTMC(model, "timespan", new Matrix("[0,1]")).tranAvg(Qt, ...
Ut, Tt);
Matrix QNt = results.QNt;
Matrix UNt = results.UNt;
Matrix TNt = results.TNt;
// PlotUtils.plot(QNt.getCol(0), QNt.getCol(1));

The transient average queue-length at node i for class r is stored within QNt in row i and column r.
Note that the above code specifies a maximum time t for the output time series. This can be done using

the timespan solver option. This applies also to average metrics. In the following example, the first model
is solved at steady-state, while the second model reports averages at time t = 1 after initialization

// Steady-state analysis
new SolverCTMC(model).getAvgTable().print();

// Transient analysis at t=1
SolverOptions options = new SolverOptions();
options.timespan = new double[]{0, 1};
new SolverCTMC(model, options).getAvgTable().print();

4.4.2 First passage times into stations

When the model is in a transient, the average state seen upon arrival to a station changes over time. That is,
in a transient, successive visits by a job may experience different response time distributions. The function
getTranCdfRespT, implemented by SolverJMT offers the possibility to obtain this distribution given the

62 CHAPTER 4. ANALYSIS METHODS

initial state specified for the model. As time passes, this distribution will converge to the steady-state one
computed by solvers equipped with the function getCdfRespT.

However, in some cases one prefers to replace the notion of response time distribution in transient by
the one of first passage time, i.e., the distribution of the time to complete the first visit to the station under
consideration. The function getTranCdfFirstPassT provides this distribution, assuming as initial state
the one specified for the model, e.g., using setState or initDefault. This function is available only in
SolverFluid and has a similar syntax as getCdfRespT.

4.5 Sample path analysis

With LINE is also possible to obtain a particular sample path from the stochastic process underlying the
queueing network. The following functions are available for this purpose:

• sample: returns a data structure including the time-varying state of a given stateful node, labelled
with information about the events that changed the node state.

• sampleAggr: returns a data structure similar to the one provided by sample, but where the state is
aggregate to count the number of jobs in each class at the node.

• sampleSys: similar to the sample function, but returns the state of every stateful node in the model.

• sampleSysAggr: similar to the sampleAggr function, but returns the aggregated state of every
stateful node in the model.

It is worth noting that the JMT solver only supports sampleAggr since the simulator does not offer a simple
way to extra detailed data such as phase change information in the service process. This information is
instead available with the SSA solver.

For example, the following command extract a sample path consisting of 10 samples for a APH(2)/M/1
queue:

Network model = Gallery.gallery_aphm1();
SamplePath samplePath = new SolverJMT(model).sampleAggr(model.getNodes().get(1), 10);
System.out.println(Arrays.toString(samplePath.getT()));
System.out.println(Arrays.toString(samplePath.getState()));

In the example, refers to the time since initialization at which the node 2 (here the APH(2)/M/1 queueing
station) enters the state shown in the second column.

If we repeat the same experiment with the SSA solver and using the sampleSys function, we now have
the full state space of the model, including both the source and the queueing station:

Network model = Gallery.gallery_aphm1();
SamplePath samplePath = new SolverSSA(model).sampleSys(10);
System.out.println(Arrays.toString(samplePath.getT()));
for (int i = 0; i < samplePath.getState().size(); i++) {

4.6. SENSITIVITY ANALYSIS AND NUMERICAL OPTIMIZATION 63

System.out.println("State " + i + ": " + Arrays.toString(samplePath.getState().get(i)));
}

4.6 Sensitivity analysis and numerical optimization

Frequently, performance and reliability analysis requires to change one or more model parameters to see the
sensitivity of the results or to optimize some goal function. In order to do this efficiently, we have discussed
before the internal representation of the Network objects used within the LINE solvers. By applying changes
directly to this internal representation it is possible to considerably speed-up the sequential evaluation of
models as discussed next.

4.6.1 Fast parameter update

Successive invocations of getStruct() will return a cached copy of the NetworkStruct representation,
unless the user has called model.refreshStruct() or model.reset() in-between the invocations. The
refreshStruct function regenerates the internal representation, while reset destroys it, together with
all other representations and cached results stored in the Network object. In the case of reset, the internal
data structure will be regenerated at the next refreshStruct() or getStruct() call.

The performance cost of updating the representation can be significant, as some of the structure array
field require a dedicated algorithm to compute. For example, finding the chains in the model requires an
analysis of the weakly connected components of the network routing matrix. For this reason, the Network
class provides several functions to selectively refresh only part of the NetworkStruct representation, once
the modification has been applied to the objects (e.g., stations, classes, ...) used to define the network. These
functions are as follows:

• refreshArrival: this function should be called after updating the inter-arrival distribution at a
Source.

• refreshCapacity: this function should be called after changing buffer capacities, as it updates the
capacity and classcapacity fields.

• refreshChains: this function should be used after changing the routing topology, as it refreshes the
rt, chains, nchains, nchainjobs, and visits fields.

• refreshPriorities: this function updates class priorities in the classprio field.

• refreshScheduling: updates the sched, and schedparam fields.

• refreshProcesses: updates the mu, phi, phases, rates and scv fields.

For example, suppose we wish to update the service time distribution for class-1 at node 1 to be exponential
with unit rate. This can be done efficiently as follows:

64 CHAPTER 4. ANALYSIS METHODS

queue.setService(class1, new Exp(1.0));
model.refreshService();

4.6.2 Refreshing a network topology with non-probabilistic routing

The resetNetwork function should be used before changing a network topology with non-probabilistic
routing. It will destroy by default all class switching nodes. This can be avoided if the function is called as,
e.g., model.resetNetwork(false). The default behavior is though shown in the next example

Network model = new Network("model");
ClassSwitch node1 = new ClassSwitch(model, "CSNode", Matrix.create(new ...
double[][]{{0,1},{0,1}}));
Queue node2 = new Queue(model, "Queue1", SchedStrategy.FCFS);
System.out.println("Before reset: " + model.getNodes().size());
\texttt{List\textlangle Node\textrangle} remaining = model.resetNetwork();
System.out.println("After reset: " + remaining.size());

As shown, resetNetwork updates the station indexes and the revised list of nodes that compose the
topology is obtained as a return parameter. To avoid stations to change index, one may simply create
ClassSwitch nodes as last before solving the model. This node list can be employed as usual to reinstanti-
ate new stations or ClassSwitch nodes. The addLink, setRouting, and possibly the setProbRouting
functions will also need to be re-applied as described in the previous sections.

4.6.3 Saving a network object before a change

The object, and its inner objects that describe the network elements, are always passed by reference. The
copy function should be used to clone LINE objects, for example before modifying a parameter for a sensi-
tivity analysis. This function recursively clones all objects in the model, therefore creating an independent
copy of the network. For example, consider the following code

Network modelByRef = model; modelByRef.setName("myModel1");
Network modelByCopy = model.copy(); modelByCopy.setName("myModel2");

Using the getName function it is then possible to verify that model has now name myModel1, since the
first assignment was by reference. Conversely, modelByCopy.setName did not affect the original model
since this is a clone of the original network.

Chapter 5

Network solvers

5.1 Overview

Solvers analyze objects of class to return average, transient, distributions, or state probability metrics. A
solver can implement one or more methods, which although featuring a similar overall solution strategy,
they can differ significantly from each other in the way this strategy is actually implemented and on whether
the final solution is exact or approximate.

A ‘method’ flag can be passed upon invoking a solver to specify the solution method that should be
used. For example, the following invocations are identical:

new SolverMVA(model, "exact").avgTable();
new SolverMVA(model, "method", "exact").avgTable();
SolverOptions opt = SolverMVA.defaultOptions(); opt.method = "exact";
new SolverMVA(model, opt).avgTable();

In what follows, we describe the general characteristics and supported model features for each solver
available in LINE and their methods.

Available solvers

The following solvers are available within LINE 3.0.x:

• LINE: This solver uses an algorithm to select the best solution method for the model under considera-
tion, among those offered by the other solvers. Analytical solvers are always preferred to simulation-
based solvers. This solver is implemented by the LINE class.

• CTMC: This is a solver that returns the exact values of the performance metrics by explicit generation of
the continuous-time Markov chain (CTMC) underpinning the model. As the CTMC typically incurs
state-space explosion, this solver can successfully analyze only small models. The CTMC solver is the
only method offered within LINE that can return an exact solution on all Markovian models, all other

65

66 CHAPTER 5. NETWORK SOLVERS

solvers are either approximate or are simulators. This solver is implemented by the SolverCTMC

class.

• FLUID: This solver analyzes the model by means of an approximate fluid model, leveraging a repre-
sentation of the queueing network as a system of ordinary differential equations (ODEs). The fluid
model is approximate, but if the servers are all PS or INF, it can be shown to become exact in the limit
where the number of users and the number of servers in each node grow to infinity [36]. This solver
is implemented by the SolverFluid class.

• JMT: This is a solver that uses a model-to-model transformation to export the LINE representation into
a JMT simulation (JSIM) or analytical (JMVA) models [3]. The JSIM simulation solver can analyze
also non-Markovian models, in particular those involving deterministic or Pareto distributions, or
empirical traces. This solver is implemented by the SolverJMT class.

• MAM: This is a matrix-analytic method solver, which relies on quasi-birth death (QBD) processes to
analyze open queueing systems. This solver is implemented by the SolverMAM class.

• MVA: This is a solver based on approximate and exact mean-value analysis. This solver is typically the
fastest and offers very good accuracy in a number of situations, in particular models where stations
have a single-server. This solver is implemented by the SolverMVA class.

• NC: This solver uses a combination of methods based on the normalizing constant of state probability
to solve a model. The underpinning algorithm are particularly useful to compute marginal and joint
state probabilities in queueing network models. This solver is implemented by the SolverNC class.

• SSA: This is a Stochastic Simulation Algorithms based on the CTMC representation of the model.
Contrary to the JMT simulator, which has online estimators for all the performance metrics, SSA
estimates only the probability distribution of the system states, indirectly deriving the metrics after
the simulation is completed. Moreover, the SSA execution can more efficiently parallelized on multi-
core machines. Moreover, it is possible to retrieve the evolution over time of each node state, including
quantities that are not loggable in JMT, e.g., the active phase of a service or arrival distribution. This
solver is implemented by the SolverSSA class.

5.2 Solution methods

We now describe the solution methods available within the solvers. Table 5.1 provides a global summary.
Some of the listed methods (e.g., mg1) are not associated to a specific solver, as they do not fall in one of
the reference formalisms. A solver that runs these methods can be instantiated as follows, e.g.:

NetworkSolver solver = LINE.load("mg1", model);
solver.getAvgTable().print();

5.2. SOLUTION METHODS 67

Note that the LINE.load notation can also be used to instantiate a custom solver pre-configured with the
specified method. For example

Solver solver = LINE.load("ctmc", model);

runs the CTMC solver with default options. Solver-specific methods can be specified by appending their name
to the method option, e.g. this command creates the CTMC solver with gpu method enabled:

NetworkSolver solver = LINE.load("ctmc.gpu", model);

Table 5.1: Solution methods for Network solvers.

Solver Method Description Refs.
CTMC default Solution based on global balance [5, §2.1.2]
FLUID default ODE-based mean field approximations [37, 43]
FLUID matrix Alias for the default method [37, 43]
FLUID closing Fluid with closing method for open classes [5][p. 507]
FLUID statedep Kurtz’s mean field ODEs for closed models [37]
FLUID softmin Smoothed statedep with softmin replacing

min functions
–

JMT default Alias for the jsim method –
JMT jmva Alias for the jmva.mva method –
JMT jmva.mva Exact MVA in JMVA [40]
JMT jmva.recal Exact RECAL algorithm in JMVA [18]
JMT jmva.comom Exact CoMoM algorithm in JMVA [8]
JMT jmva.amva Approximate MVA, alias for jmva.bs. –
JMT jmva.aql AQL algorithm in JMVA [49]
JMT jmva.bs Bard-Schweitzer algorithm in JMVA [5, §9.1.1]
JMT jmva.chow Chow algorithm in JMVA [16]
JMT jmva.dmlin De Souza-Muntz Linearizer in JMVA [19]
JMT jmva.lin Linearizer algorithm in JMVA [15]
JMT jmva.ls Logistic sampling in JMVA [9]
JMT jsim Exact discrete-event simulation in JSIM [3]
MAM default Matrix-analytic solution of structured QBDs [29]
MAM dec.source Decomposition with arrivals as from the source –
MAM dec.poisson Decomposition based on Poisson arrival flows –
MAM dec.mna Decomposition based on MNA method [33]
MVA default Approximate MVA, same as qd option –
MVA amva Approximate MVA, same as qd option –

Continued on next page

68 CHAPTER 5. NETWORK SOLVERS

Table 5.1 – Solution methods for Network solvers. Continued from previous page
Solver Method Description Refs.
MVA bs Bard-Schweitzer approximate MVA [5, §9.1.1]
MVA lin Linearizer approximate MVA [15]
MVA qd Queue-dependent approximate MVA [13]
MVA qdlin Queue-dependent Linearizer approximate MVA –
MVA exact Exact solution, method depends on model –
MVA mva Alias for the mva.amva method [40], [7]
MVA aba.upper Asymptotic bound analysis (upper bounds) [5, §9.4]
MVA aba.lower Asymptotic bound analysis (lower bounds) [5, §9.4]
MVA bjb.upper Balanced job bounds (upper bounds) [12, Table 3]
MVA bjb.lower Balanced job bounds (lower bounds) [12, Table 3]
MVA gb.upper Geometric square-root bounds (upper bounds) [12]
MVA gb.lower Geometric square-root bounds (lower bounds) [12]
MVA pb.upper Proportional bounds (upper bounds) [12, Table3]
MVA pb.lower Proportional bounds (lower bounds) [12, Table3]
MVA sb.upper Simple bounds (upper bounds, Thm. 3.2, n = 3) [27, Table3]
MVA sb.lower Simple bounds (lower bounds, Eq. 1.6) [27, Table3]
MVA gig1.allen Allen-Cunneen formula - GI/G/1 [5, §6.3.4]
MVA gig1.heyman Heyman formula - GI/G/1 –
MVA gig1.kingman Kingman upper bound- GI/G/1 [5, §6.3.6]
MVA gig1.klb Kramer-Langenbach-Belz formula - GI/G/1 [5, §6.3.4]
MVA gig1.kobayashi Kobayashi diffusion approximation - GI/G/1 [5, §10.1.1]
MVA gig1.marchal Marchal formula - GI/G/1 [5, §10.1.3]
MVA gigk Kingman approximation - GI/G/k
MVA mg1 Pollaczek–Khinchine formula - M/G/1 [5, §3.3.1]
MVA mm1 Exact formula - M/M/1 [5, §6.2.1]
MVA mmk Exact formula - M/M/k (Erlang-C)
NC default Alias for the adaptive method –
NC adaptive Automated choice of deterministic method –
NC exact Automated choice of exact solution method. –
NC ca Multiclass convolution algorithm (exact) –
NC comom Class-oriented method of moments for hommo-

geneous models (exact)
[8]

NC cub Grundmann-Moeller cubature rules [9]
NC mva Product of throughputs on MVA lattice (exact) [39, Eq. (47)]
NC imci Improved Monte carlo integration sampler [47]
NC kt Knessl-Tier asymptotic expansion [30]
NC le Logistic asymptotic expansion [9]

Continued on next page

5.2. SOLUTION METHODS 69

Table 5.1 – Solution methods for Network solvers. Continued from previous page
Solver Method Description Refs.
NC ls Logistic sampling [9]
NC nr.logit Norlund-Rice integral with logit transformation [11]
NC nr.probit Norlund-Rice integral with probit transforma-

tion
[11]

NC panacea Panacea asymptotic expansion [35], [41]
NC rd Reduction heuristic [11]
NC sampling Automated selection of sampling method –
SSA default Alias for nrm if the model supports it, otherwise

serial.
–

SSA nrm Next reaction method for population models
(e.g., PS/INF scheduling).

[1]

SSA serial CTMC stochastic simulation on a single core [26]
SSA para Parallel simulations (independent replicas) –

5.2.1 LINE

The LINE class, also callable with the alias SolverAuto, provides interfaces to the core solution functions
(e.g., avg, ...) that dynamically bind to one of the other solvers implemented in LINE (CTMC, NC, ...). It
is often difficult to identify the best solver without some performance results on the model, for example to
determine if it operates in light, moderate, or heavy-load regime.

Therefore, heuristics are used to identify a solver based on structural properties of the model, such as
based on the scheduling strategies used at the stations as well as the number of jobs, chains, and classes.
Such heuristics, though, are independent of the core function called, thus it is possible that the optimal solver
does not support the specific function called (e.g., getTranAvg). In such cases the LINE solver determines
what other solvers would be feasible and prioritizes them in execution time order, with the fastest one on
average having the higher priority. Eventually, the solver will be always able to identify a solution strategy,
through at least simulation-based solvers such as JMT or SSA.

5.2.2 CTMC

The SolverCTMC class solves the model by first generating the infinitesimal generator of the and then
calling an appropriate solver. Steady-state analysis is carried out by solving the global balance equations
defined by the infinitesimal generator. If the keep option is set to true, the solver will save the infinitesimal
generator in a temporary file and its location will be shown to the user.

Transient analysis is carried out by numerically solving Kolmogorov’s forward equations using MAT-
LAB’s ODE solvers. The range of integration is controlled by the timespan option. The ODE solver

70 CHAPTER 5. NETWORK SOLVERS

choice is the same as for SolverFluid.
The CTMC solver heuristically limits the solution to models with no more than 6000 states. The force

option needs to be set to true to bypass this control. In models with infinite states, such as networks with
open classes, the cutoff option should be used to reduce the CTMC to a finite process. If specified as a
scalar value, cutoff is the maximum number of jobs that a class can place at an arbitrary station. More
generally, a matrix assignment of cutoff indicates to LINE that cutoff has in row i and column r the
maximum number of jobs of class r that can be placed at station i.

Details on the additional configuration options of the CTMC solver is given in the next table.

Table 5.2: SolverCTMC configuration options (Kotlin)

Option Value Description
options.config.hide_immediateBoolean If true, immediate transitions are hidden from the CTMC.
options.config.state_space_gen"reachable" Direct state space enumeration from initial state.
options.config.state_space_gen"full" Direct state space enumeration from all possible initial states.
options.timestep Double Fixed time interval for transient analysis. If specified, generates

equally-spaced time points instead of adaptive stepping.

5.2.3 FLUID

This solver is based on the system of fluid ordinary differential equations for INF-PS queueing networks
presented in [37]. The latter is based on Kurtz’s mean-field approximation theory. The fluid ODEs are nor-
mally solved with a Java port of the LSODA algorithm for stiff and non-stiff ordinary differential equations.
More details about the port are available at: https://github.com/imperial-qore/lsoda-java.

ODE variables corresponding to an infinite number of jobs, as in the job pool of a source station, or to
jobs in a disabled class are not included in the solution vector. These rules apply also to the options.init_sol
vector.

The solution of models with FCFS stations maps these stations into corresponding PS stations where
the service rates across classes are set identical to each other with a service distribution given by a mixture
of the service processes of the service classes. The mixture weights are determined iteratively by solving
a sequence of PS models until convergence. Upon initializing FCFS queues, jobs in the buffer are all
initialized in the first phase of the service.

5.2.4 JMT

The class is a wrapper for the JMT and consists of a model-to-model transformation from the data struc-
ture into the JMT’s input XML formats (either .jsimg or .jmva) and a corresponding parser for JMT’s
results. Upon first invocation, the JMT JAR archive will be searched in the MATLAB path and if unavailable
automatically downloaded.

https://github.com/imperial-qore/lsoda-java

5.2. SOLUTION METHODS 71

This solver offers two main methods. The default method is the JSIM solver (method), which runs
JMT’s discrete-event simulator. For parallel simulation, the solver supports both serial and parallel ex-
ecution methods. The alternative method is the JMVA analytical solver (method), which is applica-
ble only to queueing network models that admit a product-form solution. This can be verified calling
model.hasProductFormSolution prior to running the JMVA solver.

In the transformation to JSIM, artificial nodes will be automatically added to the routing table to repre-
sent class-switching nodes used in the simulator to specify the switching rules. One such class-switching
node is defined for every ordered pair of stations (i, j) such that jobs change class in transit from i to j.

5.2.5 MAM

This is a basic solver for some Markovian open queueing systems that can be analyzed using matrix analytic
methods. The core solver is based on the BU tools library for matrix-analytic methods [29]. The solution
of open queueuing networks is based on traffic decomposition methods that compute the arrival process at
each queue resulting from the superposition of multiple source streams.

5.2.6 MVA

The solver offers approximate mean value analysis (AMVA) (options.method=), but also exact MVA al-
gorithms (options.method=). The default AMVA solver is based on Linearizer [15], unless there are two
or less jobs in total within closed classes, in which case the solver runs the Bard-Schweitzer algorithm [44].
Extended queueing models are handled as follows:

• Non-exponential service times in FCFS nodes are handled only in the single-server case via the
method selected in the options.config.highvar setting. By default high variance is ignored,
as the FCFS solver tends to produce good result in closed models also without specialized correc-
tions. It is alternatively possible to handle high variance either using the Diffusion-M/G/k interpo-
lation from [10], casted with weights ai = bi = 10−8, or using the high-variance MVA (HV-MVA)
corrections proposed in [6, 38]. The multi-server extension is ongoing; we point to the NC solver for
a version already available.

• Multi-servers are dealt with using the methods listed in Table 5.3 for the options.config.multiserver
option. These are coupled with a modification of the Rolia-Sevcik correction [42], where in light-load
the Rolia-Sevcik correction is treated as if there was a single server.

• Non-preemptive are dealt with using the methods listed in Table 5.3 for the configuration option
options.config.np_priority. The solver feature in particular AMVA-CL and the shadow
server methods [21].

• DPS queues are analyzed with a standard method similar to the biased processor sharing approxima-
tion reported in [32, §11.4]. Here, an arriving job of class r sees a queue-length in class s ̸= r scaled
by the correction factor ws/wr, where ws is the weight of class s.

72 CHAPTER 5. NETWORK SOLVERS

• Limited load-dependence (intended here as other than multi-server) and class-dependence are handled
through the correction factors proposed in [13]. If a station is both limited load-dependent and multi-
server, then if the softminmethod is chosen the solver will suitably combine the softmin term and the
limited load-dependent correcting factors. Moreover, iterative queue-length corrections such as those
applied by the AQL and Linearizer methods are also applied to these terms. Limited load-dependence
(queue-dependent AMVA or QD-AMVA) is handled through correction factors.

• Fork-join networks are assumed to feature a direct acyclic graph (DAG) in-between forks and joins.
They are analyzed by iteratively transforming the sibling tasks into jobs belonging to independent
classes, using the algorithm specified in options.config.fork_join. If a fork has fan out f (i.e.,
the fork out-degree), in the implementation of the Heidelberger-Trivedi [28] method, one artificial
open class is created for each of f−1 sibling task, while also retaining a task in the original class. The
residence times along a branch are then treated as exponential random variables and their maximum,
corresponding to the response time of the fork-join section, is computed using specialized results for
this distribution. LINE supports this method, but uses as a default a custom variant whereby in which
the original and artificial classes can take with probability 1/f any of the outgoing branches. While
the latter can result in states that do not exist in the original model, since two sibling tasks may take the
same branch, it is correct in expectation and it does not treat differently the artificial classes than the
original class, which can be beneficial when the original class is closed and thus differs significantly
from an open artificial class.

Solver-specific configuration options are reported in Table 5.3.

Table 5.3: SolverMVA configuration options (Kotlin)
Option Value Description
options.config.multiserver"default" Equals "softmin" at PS queues and

"seidmann" at FCFS queues.
options.config.multiserver"seidmann" Seidmann’s decomposition [45].
options.config.multiserver"softmin" QD-AMVA’s softmin approxima-

tion [13].
options.config.np_priority"default" Non-preemptive priority handling.

Equals "cl".
options.config.np_priority"cl" Chandy-Lakshmi [21].
options.config.np_priority"shadow" Sevcik’s shadow server [46].
options.config.highvar "default" Ignored - no correction applied.
options.config.highvar "interp" Diffusion-M/G/k interpolation from

[10].
options.config.highvar "hvmva" High-variance MVA as in [6], extended

to multiclass as [22, Eq. 3.21].
options.config.fork_join "default" Equals "mmt".
options.config.fork_join "mmt" Mixed-model transformation [20]
options.config.fork_join "ht" Heidelberger-Trivedi [28]

5.3. SUPPORTED LANGUAGE FEATURES AND OPTIONS 73

5.2.7 NC

The SolverNC class implements a family of solution algorithms based on the normalizing constant of
state probability of product-form queueing networks. Contrary to the other solvers, this method typicallly
maps the problem to certain multidimensional integrals, allowing the use of numerical methods such as
MonteCarlo sampling and asymptotic expansions in their approximation.

5.2.8 SSA

The SolverSSA class is a basic stochastic simulator for continuous-time Markov chains. It reuses some
of the methods that underpin SolverCTMC to generate the network state space and subsequently simulates
the state dynamics by probabilistically choosing one among the possible events that can incur in the system,
according to the state spaces of each of node in the network. For efficiency reasons, states are tracked at the
level of individual stations and, in some of the algorithms, hashed.

The state space is not generated upfront, but typically stored during the simulation, starting from the ini-
tial state. If the initialization of a station generates multiple possible initial states, SSA initializes the model
using the first state found. The list of initial states for each station can be obtained using the getInitState
functions of the Network class.

The SSA solver offers two comprehensive methods: 'serial' and 'para' (default). The serial method
runs on a single core, while the parallel methods run on multicore

SSA solver also implements the much faster next reaction method ('nrm', see [1]). However, this is avail-
able only for open and closed queueing models with specific scheduling disciplines, in particular INF and PS.
The 'nrm' method is default on such models. Moreover, by setting options.config.state_space_gen
to "full" it is possible to explicitly generate during the simulation the simulated state space and its steady-
state probability.

5.3 Supported language features and options

5.3.1 Solver features

Once a model is specified, it is possible to use the getUsedLangFeatures function to obtain a list of the
features of a model. For example, the following conditional statement checks if the model contains a FCFS
node

if (model.getUsedLangFeatures().list.SchedStrategy_FCFS) {
// ...

}

Every LINE solver implements the support to check if it supports all language features used in a certain
model

System.out.println(SolverJMT.supports(model));

74 CHAPTER 5. NETWORK SOLVERS

5.3.2 Class functions

The table below lists the steady-state and transient analysis functions implemented by the solvers. Since
the features of the LINE solver are the union of the features of the other solvers, in what follows it will be
omitted from the description.

Table 5.4: Solver support for average performance metrics
Network Solver

Function Regime CTMC FLUID JMT MAM MVA NC SSA
avg Steady-state
avgTable Steady-state
avgChain Steady-state
avgChainTable Steady-state
avgNode Steady-state
avgNodeTable Steady-state
avgNodeChain Steady-state
avgNodeChainTable Steady-state
avgSys Steady-state
avgSysTable Steady-state
avgArvR Steady-state
avgArvRChain Steady-state
avgNodeArvRChain Steady-state
avgQLen Steady-state
avgQLenChain Steady-state
avgNodeQLenChain Steady-state
avgRespT Steady-state
avgRespTChain Steady-state
avgNodeRespTChain Steady-state
avgSysRespT Steady-state
avgTput Steady-state
avgTputChain Steady-state
avgNodeTputChain Steady-state
avgSysTput Steady-state
avgUtil Steady-state
avgUtilChain Steady-state
avgNodeUtilChain Steady-state
getTranAvg Transient

The functions listed above with the Table suffix (e.g., avgTable) provide results in tabular format
corresponding to the corresponding core function (e.g., avg). The features of the core functions are as
follows:

• avg: returns the mean queue-length, utilization, mean response time (for one visit), and throughput
for each station and class.

5.3. SUPPORTED LANGUAGE FEATURES AND OPTIONS 75

Table 5.5: Solver support for advanced metrics
Network Solver

Function Regime CTMC FLUID JMT MAM MVA NC SSA

getCdfRespT Steady-state
getProb Steady-state
getProbAggr Steady-state
getProbSys Steady-state
getProbSysAggr Steady-state
getProbNormConstAggr Steady-state
getTranCdfPassT Transient
getTranCdfRespT Transient
getTranProb Transient
getTranProbAggr Transient
getTranProbSys Transient
getTranProbSysAggr Transient
sample Transient
sampleAggr Transient
sampleSys Transient
sampleSysAggr Transient

• avgChain: returns the mean queue-length, utilization, mean response time (for one visit), and
throughput for every station and chain.

• avgSys: returns the system response time and system throughput, as seen as the reference node, by
chain.

• getCdfRespT: returns the distribution of response times (for one visit) for the stations at steady-state.

• avgNode: behaves similarly to avg, but returns performance metrics for each node and class. For
example, throughputs at the sinks can be obtained with this method.

• getProb: returns state probabilities at equilibrium at a given station.

• getProbAggr: returns marginal state probabilities for jobs of different classes at a given station.

• getProbSys: returns joint probabilities for a given system state.

• getProbSysAggr: returns joint probabilities for jobs of different classes at all stations.

• getProbNormConstAggr: returns the normalizing constant of the state probabilities for the model.

76 CHAPTER 5. NETWORK SOLVERS

• getTranAvg: returns transient mean queue length, utilization and throughput for every station and
chain from a given initial state.

• getTranCdfPassT: returns the distribution of first passage times in transient regime.

• getTranCdfRespT: returns the distribution of response times in transient regime.

• sample: returns the transient marginal state for a station from a given initial state.

• sampleAggr: returns the transient marginal state for jobs of different classes at a given station from
a given initial state.

• sampleSys: returns the transient marginal system state for a station from a given initial state.

• sampleSysAggr: returns the transient marginal system state for jobs of different classes at a given
station from a given initial state.

5.3.3 Node types

The table below shows the node types supported by the different solvers. It should be noted that the FLUID
solver is capable of handling and nodes, but due to low accuracy when run on open models this feature is
disabled in the current release.

Table 5.6: Solver support for nodes
Network Solver

Strategy CTMC FLUID JMT MAM MVA NC SSA

Cache
ClassSwitch

Delay
Fork
Join

Queue
Sink

Source

5.3.4 Scheduling strategies

The table below shows the supported scheduling strategies within LINE queueing stations. Each strategy
belongs to a policy class:

• preemptive resume (SchedStrategyType.PR)

5.3. SUPPORTED LANGUAGE FEATURES AND OPTIONS 77

• non-preemptive (SchedStrategyType.NP)

• non-preemptive priority (SchedStrategyType.NPPrio).

The table primarily refeers to invocation of the avg methods. Specialized methods, such as transient or
response time distribution analysis, may be available only for a subset of the scheduling strategies supported
by a solver.

Table 5.7: Solver support for scheduling strategies
Network Solver

Strategy Class CTMC FLUID JMT MAM MVA NC SSA

FCFS NP
INF NP

SIRO NP
SEPT NP
SJF NP

HOL NPPrio
PS PR

DPS PR
GPS PR

PSPRIO PRPrio
DPSPRIO PRPrio
GPSPRIO PRPrio

5.3.5 Statistical distributions

The table below summarizes the current level of support for arrival and service distributions within each
solver. Replayer represents an empirical trace read from a file, which will be either replayed as-is by the
JMT solver, or fitted automatically to a Cox by the other solvers. Note that JMT requires that the last row of
the trace must be a number, not an empty row.

5.3.6 Solver options

Table 5.9 summarizes the main options available within the LINE solvers and their default values. Solver
options are encoded in LINE in a structure array that is internally passed to the solution algorithms.

This can be specified as an argument to the constructor of the solver. For example, the following two
constructor invocations are identical

Solver s = new SolverJMT(model);
SolverOptions opt = SolverJMT.defaultOptions(); s = new SolverJMT(model, opt);

78 CHAPTER 5. NETWORK SOLVERS

Table 5.8: Solver support for statistical distributions
Network Solver

Distribution CTMC FLUID JMT MAM MVA NC SSA

APH
Coxian

Exp
Erlang

HyperExp
Disabled

Det
Gamma

Lognormal
Pareto

Replayer
Uniform
Weibull

Modifiers to the default options can either be specified directly in the options data structure, or alterna-
tively be specified as argument pairs to the constructor, i.e., the following two invocations are equivalent

Solver s = new SolverJMT(model, "samples", 1000000);
SolverOptions opt = SolverJMT.defaultOptions(); opt.samples = 1000000; s = new ...
SolverJMT(model, opt);

Available solver options are as follows:

• cache (logical) if set to true the solver after the first invocation will return the same result upon
subsequent calls, without solving again the model. This option is true by default. Caching can be
bypassed using the refresh methods (see Section 4.6).

• config (struct) this is data structure to pass solver-specific configuration options to customize the
execution of particular methods.

• cutoff (integer ≥ 1) requires to ignore states where stations have more than the specified number
of jobs. This is a mandatory option to analyze open classes using the CTMC solver.

• force (logical) requires the solver to proceed with analyzing the model. This bypasses checks and
therefore can result in the solver either failing or requiring an excessive amount of resources from the
system.

• iter_max (integer ≥ 1) controls the maximum number of iterations that a solver can use, where
applicable. If iter_max= n, this option forces the FLUID solver to compute the ODEs over the

5.3. SUPPORTED LANGUAGE FEATURES AND OPTIONS 79

timespan t ∈ [0, 10n/µmin], where µmin is the slowest service rate in the model. For the MVA solver
this option instead regulates the number of successive substitutions allowed in the fixed-point iteration.

• iter_tol (double) controls the numerical tolerance used to convergence of iterative methods. In
the FLUID solver this option regulates both the absolute and relative tolerance of the ODE solver.

• init_sol (solver dependent) re-initializes iterative solvers with the given configuration of the
solution variables. In the case of MVA, this is a matrix where element (i, j) is the mean queue-length
at station i in class j. In the case of FLUID, this is a model-dependent vector with the values of all the
variables used within the ODE system that underpins the fluid approximation.

• keep (logical) determines if the model-to-model transformations store on file their intermediate
outputs. In particular, if verbose≥ 1 then the location of the .jsimg models sent to JMT will be
printed on screen.

• method (string) configures the internal algorithm used to solve the model.

• samples (integer ≥ 1) controls the number of samples collected for each performance index by
simulation-based solvers. JMT requires a minimum number of samples of 5 · 103 samples.

• seed (integer ≥ 1) controls the seed used by the pseudo-random number generators. For example,
simulation-based solvers will give identical results across invocations only if called with the same
seed.

• stiff (logical) requires the solver to use a stiff ODE solver.

• timespan (real interval) requires the transient solver to produce a solution in the specified tem-
poral range. If the value is set to double[]Inf, Inf , where Inf is imported from GlobalConstants,
the solver will only return a steady-state solution. For the FLUID solver and in simulation, this setting
has the same computational cost of double[]0.0, Inf , therefore the latter is used as default for this
solver.

• timestep (double) controls the fixed time interval for transient analysis in the CTMC solver. When
specified, the solver generates equally-spaced time points instead of using adaptive time stepping. If
not specified or set to empty, the solver uses adaptive ODE time stepping. This option only affects
transient analysis and is ignored for steady-state computations.

• tol default numerical tolerance for all uses other than the ones where iter_tol is used.

• verbose controls the verbosity level of the solver. Supported levels are 0 for silent, 1 for standard
verbosity, 2 for debugging.

80 CHAPTER 5. NETWORK SOLVERS

Table 5.9: Default values of the LINE solver options and their default assignments (Kotlin)
Solver default

Option MVA CTMC FLUID JMT MAM NC SSA
cache true true true true true true true
config
cutoff (no default)
force false false false false false false false
keep false
init_sol null null
iter_max 103 10

iter_tol 10−6 10−4 10−4

method "default" "default" "default" "default" "default" "default" "default"
samples 104 104

seed Random Random Random Random Random Random Random
stiff true
timespan [Double.POSITIVE_INFINITY] [0.0,Double.POSITIVE_INFINITY] [0.0,Double.POSITIVE_INFINITY] [Double.POSITIVE_INFINITY] [0.0,Double.POSITIVE_INFINITY]
tol 10−4 10−4

verbose 1 1 1 1 1 1 1

Chapter 6

Layered network models

In this chapter, we present the definition of the LayeredNetwork class, which encodes the support in LINE

for a class of generalized layered stochastic networks. In their basic form, these models are called layered
queueing networks (LQNs) and differ from regular queueing networks as servers, in order to process jobs,
can issue synchronous and asynchronous calls among each others. We point to [23] and to the LQNS user
manual for an introduction [24]. Contrary to the original LQNs, layered networks in LINE can also include
non-queueing servers, such as caches, hence they may be conceptualized as more general layered stochastic
networks.

The topology of call dependencies in a layered network makes it possible to partition the model into
a set of layers, each consisting of a subset of the servers. Each of these layers is then solved in isolation,
updating with an iterative procedure its parameters and performance metrics until the layers solutions jointly
converge to a consistent solution.

6.1 Basics about layered networks

Layered network models describe a collection of resources called tasks, each representing for example a
software server, that run on resources called host processors. Classes of service exposed by a task are called
entries. Each entry is an endpoint at which a task can be invoked; for example, if a task represents a web
server then its web pages may be described as different entries.

A special task, called the reference task is used to represent a group of system users. In this case, the
host processor for a reference task can either be real, as in the case of users that are themselves software
systems, or fictitious, as in the case of human users.

Each entry can be specified by a workflow of operations called activities, typically organized as a di-
rected acyclic graph. The time demand that each activity places at the underpinning host processor is called
its host demand and it is a random variable with a user-specified distribution.

Activity graphs may include calls to entries exposed by other tasks. This is an abstraction of the calls that
distributed system components have among themselves. Calls can either be synchronous, asynchronous, or

81

82 CHAPTER 6. LAYERED NETWORK MODELS

forwarding. At present, LINE supports only the first two kinds of activities. Synchronous calls are requests
that block the sender until a reply is received, while asynchronous calls are non-blocking and the sender
execution can continue after issuing the call. Calls can either be repeated either deterministic or stochastic,
meaning in the latter case that the number of calls issued is a random variable, e.g. geometrically distributed.

Contrary to ordinary layered queueing networks, a layered network in LINE can also feature cache tasks,
item entries, and cache-access precedence relations.

• Cache tasks have the basic properties of tasks, but add three specific properties for caching: the total
number of items, the cache capacity and the cache replacement policy. Cached items can be either
contents or services. Cache capacity indicates the storage constraints of the cache.

• An item-entry provides instead access to a group of entries of a cache, Item-entries have the basic
properties of entries, but add the property of the popularity of the items they give access to.

• A precedence relationship called cache-access is defined for the cache hit and miss activities under
each item-entry. That is, it is possible to proceed to a different activity depending on whether the
cache access produced a cache hit or cache miss. For example, a cache miss can produce a call to a
remote entry to retrieve the missing content.

Note that the above extensions are not queueing-based and this explains why these models are referred to
in LINE as layered networks and not as layered queueing networks. Similar to the latter, the analysis of a
layered networks uses a decomposition of the model into a set of submodels, each being a object, which are
then iterative analyzed using different solution methods.

6.2 LayeredNetwork object definition

6.2.1 Creating a layered network topology

A layered queueing network consists of four types of elements: processors, tasks, entries and activities. An
entry is a class of service specified through a finite sequence of activities, and hosted by a task running
on a (physical) processor. A task is typically a software queue that models access to the capacity of the
underpinning processor. Activities model either demands required at the underpinning processor, or calls to
entries exposed by some remote tasks.

In the LayeredNetwork class, the terms host and processor are entirely interchangeable.
To create our first layered network, we instantiate a new model as

val model = LayeredNetwork("myLayeredModel")

We now proceed to instantiate the static topology of processors, tasks and entries:

val P1 = Processor(model, "P1", 1, SchedStrategy.PS)
val P2 = Processor(model, "P2", 1, SchedStrategy.PS)
val T1 = Task(model, "T1", 5, SchedStrategy.REF).on(P1)

6.2. LAYEREDNETWORK OBJECT DEFINITION 83

val T2 = Task(model, "T2", Int.MAX_VALUE, SchedStrategy.INF).on(P2)
val E1 = Entry(model, "E1").on(T1)
val E2 = Entry(model, "E2").on(T2)

An equivalent way to specify the above example is to use the Host class instead than the Processor class,
with identical parameters.

In the above code, the on method specifies the associations between the elements, e.g., task T1 runs on
processor P1, and accepts calls to entry E1. Furthermore, the multiplicity of T1 is 5, meaning that up to 5
calls can be simultaneously served by this element (i.e., 5 is the multiplicity of servers in the underpinning
queueing system for T1).

Both processors and tasks can be associated to the standard LINE scheduling strategies. For instance,
T2 will process incoming requests in parallel according as an infinite server node, since we selected the
SchedStrategy.INF scheduling policy. An exception is that SchedStrategy.REF should be used to
denote the reference task (e.g. a node representing the clients of the models), which has a similar meaning
to the reference node in the object.

6.2.2 Describing host demands of entries

The demands placed by an entry on the underpinning host (also called in layered queueing networks the
host demand) is described in terms of execution of one or more activities. Although in tools such as LQNS
activities can be associated to either entries or tasks, LINE supports only the more general of the two options,
i.e., the definition of activities at the level of tasks. In this case:

• Every task defines a collection of activities.

• Every entry needs to specify an initial activity where the execution of the entry starts (the activity
is said to be “bound to the entry”) and a replying activity, which upon completion terminates the
execution of the entry.

For example, in our running example, we may now associate an activity to each entry as follows:

val A1 = Activity(model, "A1", Exp(1.0)).on(T1).boundTo(E1).synchCall(E2,3.5)
val A2 = Activity(model, "A2", Exp(2.0)).on(T2).boundTo(E2).repliesTo(E2)

Here, A1 is a task activity for T1, acts as initial activity for E1, consumes an exponential distributed time on
the processor underpinning T1, and requires on average 3.5 synchronous calls to E2 to complete. Each call
to entry E2 is served by the activity A2, with a demand on the processor hosting T2 given by an exponential
distribution with rate λ = 2.0.

Activity graphs

Often, it is useful to structure the sequence of activities carried out by an entry in a graph. Activity graphs
can be characterized by precedence relationships of the following kinds:

84 CHAPTER 6. LAYERED NETWORK MODELS

• sequence: two activities are executed sequentially, one after each other. This is implemented through
the ActivityPrecedence.Serial construct.

• loop: an activity is repeated a number of times. This is implemented in ActivityPrecedence.Loop.

• and-fork: a serial execution is forked into concurrent activities. This can be materialized using the
ActivityPrecedence.AndFork construct.

• or-fork: the server chooses probabilistically which activity to execute next among a set of alternatives.
This is implemented in ActivityPrecedence.OrFork.

• and-join: concurrent activities are joined into a single serial execution. This is implemented in
ActivityPrecedence.AndJoin.

• or-join: merge point for alternative activities that may execute in parallel after a or-fork. This is
implemented in ActivityPrecedence.OrJoin.

• cache-access: split point for cache hit/cache miss results in an activity graph. This is implemented in
ActivityPrecedence.CacheAccess. For usage examples, see cache_repl_lru and cache_compare_repl
in the examples/ folder.

A composite example showing fork/join precedences and loops is given in lqn_workflows in the examples/
folder.

For instance, we may replace in the running example the specification of the activities underpinning a
call to E2 as

val A20 = Activity(model, "A20", Exp(1.0)).on(T2).boundTo(E2)
val A21 = Activity(model, "A21", Erlang.fitMeanAndOrder(1.0,2)).on(T2)
val A22 = Activity(model, "A22", Exp(1.0)).on(T2).repliesTo(E2)

T2.addPrecedence(ActivityPrecedence.Serial(A20, A21, A22))

such that a call to E2 serially executes A20, A21, and A22 prior to replying. Here, A21 is chosen to be an
Erlang distribution with given mean (1.0) and number of phases (2).

6.2.3 Debugging and visualization

The structure of a LayeredNetwork object can be graphically visualized as follows

model.view();

model.view();

The jsimgView and jsimwView methods can be used to visualize in JMT each layer. This can be
done by first calling the getLayers method to obtain a list consisting of the Network objects, each one

6.3. INTERNALS 85

corresponding to a layer, and then invoking the jsimgView and jsimwView methods on the desired layer.
This is discussed in more details in the next section.

Lastly, we note a number of specification issues that trigger errors in the LQN definition:

Error Type Error Type
Activity in REF task replies Entry called both synchronously and asyn-

chronously
Entry on task calls itself Repeated definition of parent task
Entry on task calls entry on the same task Invalid .on() argument for an activity
Cycle in activity graph Invalid .on() argument for a task
Unsupported replyTo Repeated synch calls
Activity with boundTo specification Repeated asynch calls

6.3 Internals

6.3.1 Representation of the model structure

It is possible to access the internal representation of a LayeredNetwork model in a similar way as for
objects, i.e.:

val lqn: LayeredNetworkStruct = model.getStruct()

The return lqn structure, of class LayeredNetworkStruct, contains all the information about the speci-
fied model. It relies on relative and absolute indexing for the elements of the LayeredNetwork.

• A relative index is a number between 1 and the number of similar elements in the model, e.g., for a
model with 3 tasks, the relative index t of a task would be a number in [1, 3].

• An absolute index is a number between 1 and the total number of elements (of any kind, except calls)
in the model, e.g., for a model with 2 hosts, 3 tasks, 5 entries, and 8 activities, the total number of
elements is nidx= 18 and last activity a may have an absolute index aidx= 18 and a relative index
a= 8.

• The difference between the relative and the absolute index of an element is referred to as shift, e.g., in
the previous example ashift= 18− 8 = 10.

• Absolute and relative indexing for calls and hosts are identical, call index cidx ranges in [1, ncalls]
and host index hidx ranges in [1, nhosts].

Using the above convention, the internal representation of the model is described in Table 6.1. As in the
examples above, relative and absolute indexes are differentiated by using the suffix idx in the latter (e.g., a
vs. aidx). This indexing style is used throughout the codebase as well.

86 CHAPTER 6. LAYERED NETWORK MODELS

The LayeredNetworkStruct class in the JAR version provides the internal representation using
Java/Kotlin data structures. Table 6.1 lists the main properties available. The LayeredNetworkStruct
class provides idiomatic Kotlin access to the internal representation with improved type safety and nullable
annotations. Table 6.1 lists the main properties available in the Kotlin API.

Table 6.1: LayeredNetworkStruct static properties (JAR version)

Field Type Description
nidx int Total number of LayeredNetwork elements
nhosts int Number of Hosts or Processor elements
ntasks int Number of Tasks elements
nentries int Number of Entry elements
nacts int Number of Activity elements
ncalls int Number of calls issued by Activity elements
hshift int For host h, the value h+hshift returns its absolute index in

1...nidx
tshift int For task t, the value t+tshift returns its absolute index in 1...nidx
eshift int For entry e, the value e+eshift returns its absolute index in

1...nidx
ashift int For activity a, the value a+ashift returns its absolute index in

1...nidx
cshift int For call c, the value c+cshift returns its absolute index in

1...ncalls
tasksof Map〈Integer,

List〈Integer〉〉
Map from host absolute index to list of task absolute indexes on that host

entriesof Map〈Integer,
List〈Integer〉〉

Map from task absolute index to list of entry absolute indexes on that task

actsof Map〈Integer,
List〈Integer〉〉

Map from entry/task absolute index to list of activity absolute indexes

callsof Map〈Integer,
List〈Integer〉〉

Map from activity absolute index to list of call absolute indexes

hostdem Map〈Integer,
Distribution〉

Host demand distribution for each element by absolute index

think Map〈Integer,
Distribution〉

Think time distribution for each element by absolute index

sched Map〈Integer,
SchedStrategy〉

Scheduling strategy for host or task by absolute index

names Map〈Integer,
String〉

Name of element by absolute index

hashnames Map〈Integer,
String〉

Name with type prefix by absolute index (“H:” host, “R:” reference task,
“T:” task, “C:” cache task, “E:” entry, “I:” item entry, “A:” activity)

mult Matrix Multiplicity for host or task by absolute index
maxmult Matrix Maximum multiplicity for host or task by absolute index
repl Matrix Replication factor for host or task by absolute index
type Matrix LayeredNetworkElement type id for element by absolute in-

dex
nitems Matrix Number of items in CacheTask or ItemEntry by absolute in-

dex
itemcap Map〈Integer,

Integer〉
Cache capacity for cache list by absolute index

replacestrat Matrix ReplacementStrategy id for cache task by absolute index
Continued on next page

6.3. INTERNALS 87

Table 6.1 – Continued from previous page
Field Type Description
itemproc Map〈Integer,

DiscreteDistribution〉
Item popularity distribution for ItemEntry by absolute index

calltype Map〈Integer,
CallType〉

CallType for call by call index

callpair Matrix Call relationship matrix: column 1 = activity issuing call, column 2 =
entry being called

callproc Map〈Integer,
DiscreteDistribution〉

Number of calls distribution by call absolute index

callnames Map〈Integer,
String〉

Name of call by call absolute index

callhashnames Map〈Integer,
String〉

Call name with type prefixes for source and destination

actpretype Matrix ActivityPrecedenceType id before activity by absolute
index

actposttype Matrix ActivityPrecedenceType id after activity by absolute in-
dex

graph Matrix Adjacency matrix: ̸= 0 if element i “runs on”, “calls” or “precedes” ele-
ment j

dag Matrix Directed acyclic graph version of graph with flipped entry-task edges
parent Matrix Parent element absolute index for each element
replygraph Matrix True if activity replies, ending the entry call
taskgraph Matrix True if host/task i calls host/task j
iscache Matrix True if task is a CacheTask
iscaller Matrix True if element i calls element j
issynccaller Matrix True if element i issues synchronous call to element j
isasynccaller Matrix True if element i issues asynchronous call to element j
isref Matrix True if task is a reference task
isfunction Matrix True if task is a function task
setuptime Map〈Integer,

Distribution〉
Setup time distribution by absolute index

delayofftime Map〈Integer,
Distribution〉

Delay-off time distribution by absolute index

conntasks Matrix Connected tasks matrix
hitmissaidx List〈Integer〉 List of hit/miss activity absolute indexes
hitaidx Integer Hit activity absolute index
missaidx Integer Miss activity absolute index

6.3.2 Decomposition into layers

Layers are a form of decomposition where we model the performance of one or more servers. The activity
of clients not detailed in that layer is taken into account through an artificial delay station, placed in a closed
loop to the servers [42]. This artificial delay is used to model the inter-arrival time between calls issued by
that client.

The current version of LINE adopts SRVN-type layering [24], whereby a layer corresponds to one and
only one resource, either a processor or a task. The getLayers method returns a cell array consisting of
the objects corresponding to each layer

\texttt{List\textlangle Network\textrangle} layers = model.getLayers()

88 CHAPTER 6. LAYERED NETWORK MODELS

The decomposition is performed through the LN solver described later.
Within each layer, classes are used to model the time a job spends in a given activity or call, with

synchronous calls being modeled by classed with label including an arrow, e.g., is a closed class used
represent synchronous calls from activity AS1 to entry E3, whereas denotes an asynchronous call. Artificial
delays and reference nodes are modelled as a delay station named 'Clients', whereas the task or processor
assigned to the layer is modelled as the other node in the layer.

6.4 Solvers

LINE offers two solvers for the solution of a LayeredNetwork model consisting in its own native solver
(LN) and a wrapper (LQNS) to the LQNS solver [24]. The latter requires a distribution of LQNS to be
available on the operating system command line.

The solution methods available for LayeredNetwork models are similar to those for Network objects.
For example, the avgTable can be used to obtain a full set of mean performance indexes for the model,
e.g.,

val avgTable = SolverLQNS(model).avgTable()
avgTable.print()

Note that in the above table, some performance indexes are marked as NaN because they are not defined in a
layered queueing network. Further, compared to the avgTable method in objects, LayeredNetwork do
not have an explicit differentiation between stations and classes, since in a layer a task may either act as a
server station or a client class.

The main challenge in solving layered queueing networks through analytical methods is that the param-
eterization of the artificial delays depends on the steady-state performance of the other layers, thus causing
a cyclic dependence between input parameters and solutions across the layers. Depending on the solver in
use, such issue can be addressed in a different way, but in general a decomposition into layers will remain
parametric on a set of response times, throughputs and utilizations.

This issue can be resolved through solvers that, starting from an initial guess, cyclically analyze the
layers and update their artificial delays on the basis of the results of these analyses. Both LN and LQNS

implement this solution method. Normally, after a number of iterations the model converges to a steady-
state solution, where the parameterization of the artificial delays does not change after additional iterations.

6.4.1 LQNS

The LQNS wrapper operates by first transforming the specification into a valid LQNS XML file. Subse-
quently, LQNS calls the solver and parses the results from disks in order to present them to the user in the
appropriate LINE tables or vectors. The options.method can be used to configure the LQNS execution
as follows:

• options.method=std or lqns: LQNS analytical solver with default settings.

6.4. SOLVERS 89

• options.method=exact: the solver will execute the standard LQNS analytical solver with the
exact MVA method.

• options.method=srvn: LQNS analytical solver with SRVN layering.

• options.method=srvnexact: the solver will execute the standard LQNS analytical solver with
SRVN layering and the exact MVA method.

• options.method=lqsim: LQSIM simulator, with simulation length specified via the samples

field (i.e., with parameter -A options.samples, 0.95).

Upon invocation, the lqns or lqsim commands will be searched for in the system path. If they are unavail-
able, the termination of SolverLQNS will interrupt.

6.4.2 QNS

LINE also includes a dedicated wrapper solver for the qnsolver utility distributed within LQNS, called
SolverQNS. This allows users to evaluate product-form models using the MVA algorithms implemented
within LQNS. The available options specify the multiserver handling algorithm:

• options.method=conway: Conway’s multiserver approximation within the Linearizer algorithm
proposed in [17].

• options.method=rolia: Rolia’s multiserver in the Methods of Layers paper [42].

• options.method=reiser: load-dependent mean-value analysis as described originally by Reiser-
Lavenberg in [40].

• options.method=zhou: Zhou-Woodside’s multiserver approximation in [50].

6.4.3 LN

The native LN solver iteratively applies the layer updates until convergence of the steady-state measures.
Since updates are parametric on the solution of each layer, LN can apply any of the solvers described in
the solvers chapter to the analysis of individual layers, as illustrated in the following example for the MVA
solver

val options = SolverLN.defaultOptions()
val mvaopt = SolverMVA.defaultOptions()
SolverLN(model, { layer -> SolverMVA(layer, mvaopt) }, options).avgTable().print()

Options parameters may also be omitted. The LN method converges when the maximum relative change of
mean response times across layers from the last iteration is less than options.iter_tol.

Methods supported by the LN solver include:

90 CHAPTER 6. LAYERED NETWORK MODELS

• options.method=default: default recursive solution based on mean values

• options.method=moment3: solution by recursive 3-moment approximation of response time dis-
tributions.

6.5 Model import and export

A LayeredNetwork can be easily read from, or written to, a XML file based on the LQNS meta-model
format1. The read operation can be done using a static method of the LayeredNetwork class, i.e.,

val model: LayeredNetwork = LayeredNetwork.parseXML(filename)

Conversely, the write operation is invoked directly on the model object

model.writeXML(filename)

In both examples, filename is a string including both file name and its path.
Finally, we point out that it is possible to export a LQN in the legacy SRVN file format2 by means of the

writeSRVN(filename) function.

1https://raw.githubusercontent.com/layeredqueuing/V5/master/xml/lqn.xsd
2http://www.sce.carleton.ca/rads/lqns/lqn-documentation/format.pdf

https://raw.githubusercontent.com/layeredqueuing/V5/master/xml/lqn.xsd
http://www.sce.carleton.ca/rads/lqns/lqn-documentation/format.pdf

Chapter 7

Random environments

Systems modeled with LINE can be described as operating in an environment with a state that affects the
way the system dynamics. To distinguish the states of the environment from the ones of the system within
it, we shall refer to the former as the environment stages. In particular, LINE 3.0.x supports the definition of
a class of random environments subject to three assumptions:

• The stage of the environment evolves independently of the state of the system.

• The dynamics of the environment stage can be described by a continuous-time Markov chain.

• The topology of the system is independent of the environment stage.

The above definitions are in particular appropriate to describe systems specified by input parameters (e.g.,
service rates, scheduling weights, etc) that change with the environment stage. For example, an environment
with two stages, say normal load and peak load, may differ for the number of servers that are available in a
queueing station, i.e., the system controller may add more servers during peak load. Upon a stage change
in the environment, the model parameters will instantaneously change, and the system state reached during
the previous stage will be used to initialize the system in the new stage.

Although in a number of cases the system performance may be similar to a weighted combination of the
average performance in each stage, this is not true in general, especially if the system dynamic (i.e., the rate
at which jobs arrive and get served) and the environment dynamic (i.e., the rate at which the environment
changes active stage) have a similar magnitude [14].

7.1 Environment object definition

7.1.1 Specifying the environment

In LINE, an environment is internally described by a Markov renewal process (MRP) with transition times
belonging to the Markovian class. A MRP is similar to a Markov chain, but state transitions are not

91

92 CHAPTER 7. RANDOM ENVIRONMENTS

restricted to be exponential. Although the time spent in each state of the MRP is not exponential, the MRP
with phase-type transitions can be easily transformed into an equivalent continuous-time Markov chain
(CTMC) to enable analysis, a task that LINE performs automatically.

To specify an environment, we first create an Env object with the environment name

val E = 2
val envModel = Env("UnreliableEnv", E)

where the E parameter indicates the number of stages in the environment. We then add two stages

envModel.addStage("Online", "UP", network1)
envModel.addStage("Offline", "DOWN", network2)

where the constructor specifies the stage name, an arbitrary string to classify the stage (here taken from a
taxonomy in the Semantics class), follows by a object describing the system model conditional on the
environment being in the corresponding stage.

We now describe that the transitions between stages are both exponential, with different rates

envModel.addTransition(0, 1, Exp(1))
envModel.addTransition(1, 0, Exp(2))

We can also add a self-loop on the online stage as follows

envModel.addTransition(0, 0, Erlang.fitMeanAndOrder(1,2))

which would cause a race condition between two distributions in stage two: the exponential transition back
to the offline stage, and the Erlang-2 distributed transition with unit rate that remains in the online stage. The
underpinning CTMC will therefore consider the distribution of the minimum between the exponential and
the Erlang-2 distribution, in order to decide the next stage transition. State space explosion may occur in the
definition of an environment if the user specifies a large number of non-exponential transition. For example,
a race condition among n Erlang-2 distribution translates at the level of the CTMC into a state space with
2n states. In such situations, it is recommended to replace some of the distributions with exponential ones.

To summarize the properties of the environment defined above we may use the getStageTablemethod

// Print stage table information
envModel.printStageTable()
// Output is identical to Java version above

In the table, the State column gives a numerical identifier for each stage, followed by its stage probability
at equilibrium, a Markovian representation of the time spent in it before a transition, and by a pointer to the
sub-model associated to that stage.

7.1. ENVIRONMENT OBJECT DEFINITION 93

7.1.2 Specifying a reset policy

When the environment transitions, the default policy is that the associated model is re-initialized using the
marginal queue-length values observed at departure instants. This means in practice that jobs in execution
at a server are required all to restart execution at that server upon occurrence of a transition. This may not
be possible in some models, for example when a station is removed from the model. In that case, one can
define a custom reset policy by instantiating transitions as, e.g.,

// Define a reset function that moves all jobs into station 0
val resetRule = Env.ResetQueueLengthsFunction { qExit ->

val numStations = qExit.numRows
val numClasses = qExit.numCols
val qReset = Matrix(numStations, numClasses)

// Move all jobs to station 0, preserving their classes
for (c in 0 until numClasses) {

var totalJobsInClass = 0.0
for (s in 0 until numStations) {

totalJobsInClass += qExit[s, c]
}
qReset[0, c] = totalJobsInClass

}
qReset

}

// Add transition with reset rule
// Assuming stages are indexed (0 for 'Online', 1 for 'Offline')
envModel.add_transition(0, 1, Exp(1.0), resetRule)

In Kotlin, the resetRule is defined as a lambda expression implementing the ResetQueueLengthsFunction
interface. The reset policy works identically to the Java version, moving all jobs to station 0 while preserving
their class assignments.

7.1.3 Specifying system models for each stage

LINE places loose assumptions in the way the system should be described in each stage. It is just expected
that the user supplies a model object, either a or a LayeredNetwork, in each stage, and that a transient
analysis method is available in the chosen solver, a requirement fulfilled for example by SolverFluid.

However, we note that the model definition can be somewhat simplified if the user describes the system
model in a separate MATLAB function, accepting the stage-specific parameters in input to the function.
This enables reuse of the system topology across stages, while creating independent model objects.

94 CHAPTER 7. RANDOM ENVIRONMENTS

7.2 Solvers

The steady-state analysis of a system in a random environment is carried out in LINE using the blending
method [14], which is an iterative algorithm leveraging the transient solution of the model. In essence, the
model looks at the average state of the system at the instant of each stage transition, and upon restarting the
system in the new stage re-initializes it from this average value. This algorithm is implemented in LINE by
the SolverEnv class, which is described next.

7.2.1 ENV

The SolverEnv class applies the blending algorithm by iteratively carrying out a transient analysis of each
system model in each environment stage, and probabilistically weighting the solution to extract the steady-
state behavior of the system.

As in the transient analysis of objects, LINE does not supply a method to obtain mean response times,
since Little’s law does not hold in the transient regime. To obtain the mean queue-length, utilization and
throughput of the system one can call as usual the avg method on the SolverEnv object, e.g.,

val solvers = arrayOfNulls<NetworkSolver>(E)
for (e in 0 until E) {
solvers[e] = SolverFluid(envModel.getModel(e))
solvers[e]!!.options = SolverOptions(SolverType.Fluid)

}

val envSolver = SolverEnv(envModel, solvers, options)
envSolver.avg()
val result = envSolver.result

Note that as model complexity grows, the number of iterations required by the blending algorithm to con-
verge may grow large. In such cases, the options.iter_max option may be used to bound the maximum
analysis time.

Bibliography

[1] David F Anderson. A modified next reaction method for simulating chemical systems with time de-
pendent propensities and delays. The Journal of chemical physics, 127(21), 2007.

[2] S. Balsamo. Product form queueing networks. In Günter Haring, Christoph Lindemann, and Martin
Reiser, editors, Performance Evaluation: Origins and Directions, volume 1769 of Lecture Notes in
Computer Science, pages 377–401. Springer, 2000.

[3] M. Bertoli, G. Casale, and G. Serazzi. The JMT simulator for performance evaluation of non-product-
form queueing networks. In Proc. of the 40th Annual Simulation Symposium (ANSS), pages 3–10,
2007.

[4] A. Bobbio, A. Horváth, M. Scarpa, and M Telek. Acyclic discrete phase type distributions: properties
and a parameter estimation algorithm. Perform. Eval., 54(1):1–32, 2003.

[5] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and Markov Chains. Wiley,
2006.

[6] A. B. Bondi and W. Whitt. The influence of service-time variability in a closed network of queues.
Perform. Eval., 6:219–234, 1986.

[7] S. C. Bruell, G. Balbo, and P. V. Afshari. Mean value analysis of mixed, multiple class BCMP networks
with load dependent service stations. Performance Evaluation, 4:241–260, 1984.

[8] G. Casale. CoMoM: Efficient class-oriented evaluation of multiclass performance models. IEEE Trans.
Software Engineering, 35(2):162–177, 2009.

[9] G. Casale. Accelerating performance inference over closed systems by asymptotic methods. In Proc.
of ACM SIGMETRICS. ACM Press, 2017.

[10] G. Casale. Integrated Performance Evaluation of Extended Queueing Network Models with Line. In
2020 Winter Simulation Conference (WSC), pages 2377–2388. IEEE, dec 2020.

[11] G. Casale, P.G. Harrison, and O.W. Hong. Facilitating load-dependent queueing analysis through
factorization. Perform. Eval., 2021.

95

96 BIBLIOGRAPHY

[12] G. Casale, Richard R. Muntz, and Giuseppe Serazzi. Geometric bounds: A noniterative analysis
technique for closed queueing networks. IEEE Trans. Computers, 57(6):780–794, 2008.

[13] G. Casale, J. F. Pérez, and W. Wang. QD-AMVA: Evaluating systems with queue-dependent service
requirements. In Proceedings of IFIP PERFORMANCE, 2015.

[14] G. Casale, M. Tribastone, and P. G. Harrison. Blending randomness in closed queueing network
models. Perform. Eval., 82:15–38, 2014.

[15] K. M. Chandy and D. Neuse. Linearizer: A heuristic algorithm for queuing network models of com-
puting systems. Commun. ACM, 25(2):126–134, 1982.

[16] W.-M. Chow. Approximations for large scale closed queueing networks. Perform. Eval, 3(1):1–12,
1983.

[17] A. E. Conway. Fast Approximate Solution of Queueing Networks with Multi-Server Chain-Dependent
FCFS Queues, pages 385–396. Springer US, Boston, MA, 1989.

[18] A. E. Conway and N. D. Georganas. RECAL - A new efficient algorithm for the exact analysis of
multiple-chain closed queueing networks. J. ACM, 33(4):768–791, 1986.

[19] E. de Souza e Silva and R. R. Muntz. A note on the computational cost of the linearizer algorithm for
queueing networks. IEEE Trans. Computers, 39(6):840–842, 1990.

[20] R.-A. Dobre, Z. Niu, and G. Casale. Approximating fork-join systems via mixed model transforma-
tions. In Companion of the 15th ACM/SPEC International Conference on Performance Engineering,
ICPE ’24 Companion, page 273–280, New York, NY, USA, 2024. Association for Computing Ma-
chinery.

[21] D. L. Eager and J. N. Lipscomb. The AMVA priority approximation. Perform. Eval., 8(3):173–193,
1988.

[22] G. Franks. Performance Analysis of Distributed Server Systems. PhD thesis, Carleton, 1996.

[23] G. Franks, T. Al-Omari, M. Woodside, O. Das, and S. Derisavi. Enhanced modeling and solution of
layered queueing networks. IEEE Trans. Software Engineering, 35(2):148–161, 2009.

[24] G. Franks, P. Maly, C. M. Woodside, D. C. Petriu, A. Hubbard, and M. Mroz. Layered Queueing
Network Solver and Simulator User Manual, 2012.

[25] N. Gast and B. Van Houdt. Transient and steady-state regime of a family of list-based cache replace-
ment algorithms. Queueing Syst, 83(3-4):293–328, 2016.

[26] D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.,
81(25):2340–2361, 1977.

BIBLIOGRAPHY 97

[27] A. Harel, S. Namn, and J. Sturm. Simple bounds for closed queueing networks. Queueing Systems,
31(1-2):125–135, 1999.

[28] P. Heidelberger and K. Trivedi. Queueing network models for parallel processing with asynchronous
tasks. IEEE Trans. Computers, 100(11):1099–1109, 1982.

[29] G. Horváth and M. Telek. Butools 2: A rich toolbox for markovian performance evaluation. In
Proc. of VALUETOOLS, pages 137–142, ICST, Brussels, Belgium, Belgium, 2017. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering).

[30] C. Knessl and C. Tier. Asymptotic expansions for large closed queueing networks with multiple job
classes. IEEE Trans. Computers, 41(4):480–488, 1992.

[31] S. S. Lavenberg. A perspective on queueing models of computer performance. Perform. Eval.,
10(1):53–76, 1989.

[32] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative System Performance.
Prentice-Hall, 1984.

[33] Z. Li and G. Casale. Matrix network analyzer: A new decomposition algorithm for phase-type queue-
ing networks (work in progress paper). In Companion of the 15th ACM/SPEC International Confer-
ence on Performance Engineering, ICPE ’24 Companion, page 34–39, New York, NY, USA, 2024.
Association for Computing Machinery.

[34] KT Marshall. Some relationships between the distributions of waiting time, idle time and interoutput
time in the gi/g/1 queue. SIAM Journal on Applied Mathematics, 16(2):324–327, 1968.

[35] J. McKenna and D. Mitra. Asymptotic expansions and integral representations of moments of queue
lengths in closed markovian networks. J. ACM, 31(2):346–360, April 1984.

[36] J. F. Pérez and G. Casale. Assessing SLA compliance from Palladio component models. In Proceed-
ings of the 2nd MICAS, 2013.

[37] J. F. Pérez and G. Casale. Line: Evaluating software applications in unreliable environments. IEEE
Trans. Reliability, 66(3):837–853, Sept 2017.

[38] M. Reiser. A queueing network analysis of computer communication networks with window flow
control. IEEE Trans. Communications, 27(8):1199–1209, 1979.

[39] M. Reiser. Mean-value analysis and convolution method for queue-dependent servers in closed queue-
ing networks. Perform. Eval., 1:7–18, 1981.

[40] M. Reiser and S. Lavenberg. Mean-value analysis of closed multichain queuing networks. J. ACM,
27:313–322, 1980.

98 BIBLIOGRAPHY

[41] T. G. Robertazzi. Computer Networks and Systems. Springer, 2000.

[42] J. A. Rolia and K. C. Sevcik. The method of layers. IEEE Trans. Software Engineering, 21(8):689–700,
August 1995.

[43] J. Ruuskanen, T. Berner, K.-E. Årzén, and A. Cervin. Improving the mean-field fluid model of pro-
cessor sharing queueing networks for dynamic performance models in cloud computing. Perform.
Evaluation, 151:102231, 2021.

[44] P. J. Schweitzer. Approximate analysis of multiclass closed networks of queues. In Proc. of the Int’l
Conf. on Stoch. Control and Optim., pages 25–29, Amsterdam, 1979.

[45] A. Seidmann, P. J. Schweitzer, and S. Shalev-Oren. Computerized closed queueing network models of
flexible manufacturing systems: A comparative evaluation. Large Scale Systems, 12:91–107, 1987.

[46] K. Sevcik. Priority scheduling disciplines in queuing network models of computer systems. In IFIP
Congress, 1977.

[47] W. Wang, G. Casale, and C. A. Sutton. A bayesian approach to parameter inference in queueing
networks. ACM Trans. Model. Comput. Simul., 27(1):2:1–2:26, 2016.

[48] M. Woodside. Tutorial Introduction to Layered Modeling of Software Performance. Carleton Univer-
sity, February 2013.

[49] J. Zahorjan, D. L. Eager, and H. M. Sweillam. Accuracy, speed, and convergence of approximate mean
value analysis. Perform. Eval., 8(4):255–270, 1988.

[50] S. Zhou and M. Woodside. A multiserver approximation for cloud scaling analysis. In Companion of
the 2022 ACM/SPEC International Conference on Performance Engineering, ICPE ’22, page 129–136,
New York, NY, USA, 2022. Association for Computing Machinery.

Appendix A

Examples

Table A.1: Examples

Example Problem
cache_replc_rr A small cache model with an open arrival process
cache_replc_fifo A small cache model with a closed job population
cache_replc_lru A layered network with a caching layer
cache_compare_replc A layered network with a caching layer having a multi-level cache
cache_replc_routing A caching model with state-dependent output routing
cdf_respt_closed Station response time distribution in a single-class single-job closed network
cdf_respt_closed_threeclasses Station response time distribution in a multi-chain closed network
cdf_respt_open_twoclasses Station response time distribution in a multi-chain open network
cdf_respt_distrib Simulation-based station response time distribution analysis
cdf_respt_populations Station response time distribution under increasing job populations
cqn_repairmen Solving a single-class exponential closed queueing network
cqn_twoclass_hyperl Solving a closed queueing network with a multi-class FCFS station
cqn_threeclass_hyperl Solving exactly a multi-chain product-form closed queueing network
cqn_multiserver Local state space generation for a station in a closed network
cqn_oneline 1-line exact MVA solution of a cyclic network of PS and INF stations
cqn_twoclass_erl Closed network with round robin scheduling
cqn_bcmp_theorem Comparison of different scheduling policies that preserve the product-form so-

lution
cqn_repairmen_multi Multi-server closed queueing network with repairmen
cqn_twoqueues_multi Closed queueing network with two multi-server queues
cqn_twoqueues Simple closed network with two queues
cs_implicit Class switching with implicit routing
cs_multi_diamond Class switching with multiple diamond patterns
cs_single_diamond Class switching with single diamond pattern
cs_transient_class Class switching with transient classes
fj_basic_open A simple single class open fork-join network
fj_twoclasses_forked A multiclass open fork-join network
fj_basic_nesting A closed model with nested forks and joins

Continued on next page

99

100 APPENDIX A. EXAMPLES

Table A.1 – Examples. Continued from previous page
Example Problem
fj_nojoin An open model with a fork but without a join
fj_basic_closed A simple single class closed fork-join network
fj_serialfjs_open Two open fork-joins subsystems in tandem
fj_cs_postfork Two-class fork-join with a class that switches into the other after the fork
fj_cs_multi_visits Two fork-joins loops within the same chain
fj_route_overlap A model with overlapping routes in a fork-join network
fj_asymm Asymmetric fork-join network
fj_delays Fork-join network with delays
fj_complex_serial Complex serial fork-join network
fj_threebranches Fork-join network with three branches
fj_cs_prefork Fork-join network with class-switching before fork
fj_deep_nesting Fork-join network with deep nesting
fj_serialfjs_closed Closed serial fork-join network
init_state_fcfs_exp Specifying an initial state and prior in a single class model.
init_state_fcfs_nonexp Specifying an initial state and prior in a multiclass model.
init_state_ps Specifying an initial state and prior in a model with class-switching.
lqn_serial Analyze a layered network specified in a LQNS XML file
lqn_multi_solvers Specifying and solving a basic layered network
lqn_init Specifying and solving a basic layered network with initialization
lqn_twotasks Layered network with two tasks
lqn_bpmn BPMN to layered network transformation
lqn_workflows Workflow modeling in layered networks
lqn_function Layered network function modeling
lqn_basic Basic layered network example
ld_multiserver_fcfs Solving a single-class load-depedent closed model
ld_multiserver_ps_twoclasses Solving a two-node multiclass load-depedent closed model
ld_multiserver_ps Solving a three-node multiclass load-depedent closed model
ld_class_dependence Load-dependent model with class dependence
cqn_scheduling_dps Parameterization of a discriminatory processor sharing (DPS) station
cqn_mmpp2_service Automatic detection of solvers that cannot analyze the model
mqn_basic Solving a queueing network model with both closed and open classes
mqn_multiserver_ps A difficult mixed model with sparse routing among multi-server nodes
mqn_multiserver_fcfs Mixed model with multiserver FCFS nodes
mqn_singleserver_fcfs Mixed model with single server FCFS
mqn_singleserver_ps Mixed model with single server PS
oqn_basic Solving a queueing network model with open classes, scalar cutoff options
oqn_oneline 1-line solution of a tandem network of PS and INF stations
oqn_cs_routing Solving a queueing network model with open classes, matrix cutoff options
oqn_trace_driven Trace-driven simulation of an M/M/1 queue
oqn_vsinks A model illustrating the emulation of multiple sinks
oqn_fourqueues A large multiclass example with PS and FCFS
prio_hol_open A multiclass example with PS, SIRO, FCFS, HOL priority
prio_hol_closed A high-load multiclass example with PS, SIRO, FCFS, HOL priority
prio_psprio A repaimen model with PS priority scheduling.
prio_identical Priority model with identical classes
renv_twostages_repairmen Solving a model in a 2-stage random environment with exponential rates

Continued on next page

101

Table A.1 – Examples. Continued from previous page
Example Problem
renv_fourstages_repairmen Solving a model in a 4-stage random environment with Coxian rates
renv_threestages_repairmen Solving a model in a 3-stage random environment with Erlang rates
sdroute_closed A model with round-robin routing
sdroute_twoclasses_closed A model with round-robin routing after multi-class PH and MAP service
sdroute_open A load-balancer modeled as a router
statepr_aggr Computing marginal state probabilities for a node
statepr_aggr_large Computing marginal state probabilities for a node under class-switching
statepr_sys_aggr Computing joint state probabilities for a system with two nodes under class-

switching
statepr_sys_aggr_large Computing joint state probabilities under class-switching and with delay nodes
statepr_allprobs_ps Computing probabilities under PS class-switching and with delay nodes
statepr_allprobs_fcfs Computing probabilities under PS and FCFS class-switching and with delay

nodes
spn_basic_open JMT simulation of a simple stochastic Petri net model
spn_open_sevenplaces JMT simulation of a complex stochastic Petri net model
spn_twomodes Stochastic Petri net with two modes
spn_fourmodes Stochastic Petri net with four modes
spn_inhibiting Stochastic Petri net with inhibiting transitions
spn_closed_fourplaces Closed Stochastic Petri net with four places
spn_closed_twoplaces Closed Stochastic Petri net with two places
spn_basic_closed Basic closed stochastic Petri net
tut_01_mm1_basics M/M/1 queue basics
tut_02_mg1_multiclass_solvers M/G/1 multiclass solvers
tut03_repairmen Repairmen model
tut_04_lb_routing Load balancing routing
tut05_completes_flag Complete flag usage
tut_06_cache_lru_zipf Cache LRU Zipf distribution
tut_07_respt_cdf Response time CDF analysis
tut_08_opt_load_balancing Optimal load balancing
tut_09_dep_process_analysis Dependent process analysis
lcq_singlehost Single host layered cache queueing
lcq_threehosts Three hosts layered cache queueing
swt_basic Basic switchover times model
polling_exhaustive_exp Exhaustive polling with exponential times
polling_gated Gated polling
polling_klimited K-limited polling
polling_exhaustive_det Exhaustive polling with deterministic times

Appendix B

API Function Reference

This appendix provides a comprehensive catalog of all API functions available in the jline.api package.
The table lists each function name, its organizational package, and a brief description of its purpose.

Table B.1: Complete API Function Reference

Function Name Package Description
amap2_fit_gamma mam Fits AMAP(2) distributions to match moments and correlation

characteristics
amap2_fit_gamma_map mam Fits AMAP(2) by approximating arbitrary-order MAP with

preserved correlation structure
amap2_fit_gamma_trace mam Fits AMAP(2) from empirical traces while preserving auto-

correlation characteristics
aph2_adjust mam Adjusts moments to ensure feasibility bounds for APH(2) fit-

ting procedures
aph2_assemble mam Constructs APH(2) transition matrices from specified rates

and transition probabilities
aph2_fit mam Fits APH(2) distributions to match given moments with auto-

matic feasibility adjustment
aph2_fit_map mam Fits APH(2) distributions by approximating arbitrary-order

MAP processes
aph2_fit_trace mam Fits APH(2) distributions from empirical inter-arrival time

traces
aph2_fitall mam Fits multiple APH(2) distributions to match given moments

with exhaustive parameter search
aph_bernstein mam Constructs APH distributions using Bernstein exponential ap-

proximation methods
aph_fit mam Fits APH distributions to specified moments using optimiza-

tion and approximation techniques
aph_rand mam APH random generation algorithms
aph_simplify mam Simplifies and combines APH distributions using structural

pattern operations
Continued on next page

102

103

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
cache_erec cache Implements exact recursive (EREC) algorithms for cache sys-

tem analysis
cache_gamma cache Computes cache access factors from request arrival rates and

routing matrices
cache_gamma_lp cache Computes cache access factors using linear programming op-

timization methods
cache_miss cache Provides general-purpose algorithms for computing cache

miss rates across
cache_miss_asy cache Provides asymptotic approximation methods for cache miss

rate analysis
cache_miss_fpi cache Computes cache miss probabilities using fixed-point iteration

methods
cache_miss_rayint cache Estimates cache miss rates using ray method for partial differ-

ential equations
cache_mva cache Implements Mean Value Analysis algorithms for cache sys-

tem performance
cache_mva_miss cache Implements Mean Value Analysis (MVA) algorithms for com-

puting cache miss
cache_prob_erec cache Computes exact cache state probabilities using recursive

methods based on
cache_prob_fpi cache Computes cache state probabilities using fixed-point iteration

algorithms
cache_prob_rayint cache Computes cache state probabilities using ray integration

methods for
cache_rayint cache Implements ray integration techniques for cache system anal-

ysis using
cache_rrm_meanfield_ode cache Implements the mean field ordinary differential equation sys-

tem for Random
cache_t_hlru cache Computes response time metrics for Hierarchical Least Re-

cently Used (H-LRU)
cache_t_lrum cache Computes response time metrics for Least Recently Used with

Multiple servers
cache_t_lrum_map cache Analyzes response times for LRUM cache systems with

Markovian Arrival
cache_ttl_hlru cache Implements TTL approximation for Hierarchical LRU (H-

LRU) cache systems
cache_ttl_lrua cache Implementation of Time-To-Live (TTL) approximation for

LRU(A) cache systems
cache_ttl_lrum cache Implementation of Time-To-Live approximation for Least Re-

cently Used with
cache_ttl_lrum_map cache Combines TTL approximation with LRUM cache policies and

Markovian Arrival
cache_ttl_tree cache Tree-based TTL cache analysis implementation for the LINE

solver framework
cache_xi_bvh cache Computes cache xi terms using the iterative method from

Gast-van Houdt
Continued on next page

104 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
cache_xi_fp cache Estimates cache xi terms using fixed-point algorithms. Xi

terms represent
ctmc_courtois mc Courtois decomposition for nearly completely decomposable

CTMCs
ctmc_kms mc Koury-McAllister-Stewart aggregation-disaggregation

method for CTMCs
ctmc_makeinfgen mc Constructs and validates infinitesimal generator matrices for

continuous-time
ctmc_multi mc Multi-level aggregation method for CTMCs
ctmc_pseudostochcomp mc API function for mc operations
ctmc_rand mc Generates random infinitesimal generator matrices for

continuous-time Markov chains
ctmc_randomization mc Converts a continuous-time Markov chain into an equivalent

discrete-time chain
ctmc_relsolve mc Equilibrium distribution of a continuous-time Markov chain

re-normalized with respect to
ctmc_simulate mc Generates sample paths for CTMCs using the standard simu-

lation algorithm with
ctmc_solve mc Computes the steady-state probability distribution for CTMCs

by solving the linear
ctmc_solve_reducible mc Solve reducible CTMCs by converting to DTMC via random-

ization
ctmc_ssg mc API function for mc operations
ctmc_ssg_reachability mc CTMC State Space Generator for Reachability Analysis
ctmc_stmonotone mc Computes the stochastically monotone upper bound for a

CTMC
ctmc_stochcomp mc Implements stochastic complementarity analysis for CTMCs

to identify strongly
ctmc_takahashi mc Takahashi’s aggregation-disaggregation method for CTMCs
ctmc_testpf_kolmogorov mc Test if a CTMC has product form using Kolmogorov’s criteria
ctmc_timereverse mc Computes the infinitesimal generator of the time-reversed

continuous-time
ctmc_transient mc Computes transient probabilities for CTMCs using numerical

integration of the
ctmc_uniformization mc CTMC Transient Analysis via Uniformization
dtmc_isfeasible mc Check if a matrix represents a feasible DTMC transition ma-

trix
dtmc_makestochastic mc Converts non-negative matrices into valid discrete-time

Markov chain transition
dtmc_rand mc Generates random stochastic transition matrices for discrete-

time Markov chains
dtmc_simulate mc Generates sample trajectories for DTMCs by sampling from

the transition probability
dtmc_solve mc Computes the steady-state probability distribution for DTMCs

by converting the
dtmc_solve_reducible mc Result class for DTMC solve reducible

Continued on next page

105

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
dtmc_stochcomp mc Returns the stochastic complement of a DTMC
dtmc_timereverse mc Compute the infinitesimal generator of the time-reversed

DTMC
dtmc_uniformization mc Result class for DTMC uniformization analysis containing the

probability vector and maximum iterations used
lossn_erlangfp lossn Implements fixed-point algorithms for analyzing loss net-

works using Erlang
lsn_max_multiplicity lsn Computes maximum multiplicity constraints for load sharing

network (LSN)
m3pp22_fitc_approx_cov mam.m3pp Implements parameter fitting for second-order Marked

Markov Modulated Poisson Process
m3pp22_fitc_approx_cov_multiclass mam.m3pp Implements constrained optimization for fitting M3PP(2,2)

parameters given an underlying
m3pp22_interleave_fitc mam.m3pp Implements lumped superposition of multiple M3PP(2,2) pro-

cesses using interleaved
m3pp2m_fitc mam.m3pp Implements exact fitting of second-order Marked Markov

Modulated Poisson Process
m3pp2m_fitc_approx mam.m3pp Implements approximation-based fitting for M3PP(2,m) using

optimization methods
m3pp2m_fitc_approx_ag mam.m3pp Implements auto-gamma approximation method for

M3PP(2,m) parameter fitting
m3pp2m_fitc_approx_ag_multiclass mam.m3pp Implements multiclass auto-gamma fitting for M3PP(2,m)

with variance and covariance
m3pp2m_interleave mam.m3pp Implements interleaved superposition of multiple M3PP(2,m)

processes to construct
m3pp_interleave_fitc mam.m3pp Implements fitting and interleaving of k second-order M3PP

processes with varying
m3pp_interleave_fitc_theoretical mam.m3pp Implements theoretical MMAP fitting through M3PP inter-

leaving using analytical
m3pp_interleave_fitc_trace mam.m3pp Implements M3PP interleaving and fitting directly from em-

pirical trace data
m3pp_rand mam.m3pp Implements random generation of Markovian Multi-class

Point Processes (M3PP)
m3pp_superpos_fitc mam.m3pp Implements superposition-based fitting of k second-order

M3PP processes into
m3pp_superpos_fitc_theoretical mam.m3pp Implements superposition fitting of k second-order M3PP pro-

cesses using theoretical
mamap22_fit_gamma_fs_trace mam Fits MAMAP(2,2) from trace data using gamma autocorrela-

tion and forward-sigma characteristics
mamap22_fit_multiclass mam Fits MAMAP(2,2) processes for two-class systems with for-

ward moments and sigma characteristics
mamap2m_coefficients mam Computes coefficients for MAMAP(2,m) fitting formulas in

canonical forms
mamap2m_fit mam Fits MAMAP(2,m) processes matching moments, autocorre-

lation, and class characteristics
Continued on next page

106 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
mamap2m_fit_fb_multiclass mam Fits MAMAP using combined forward and backward moment

characteristics for multiclass systems
mamap2m_fit_gamma_fb_mmap mam Fits MAMAP with autocorrelation control using forward-

backward moments from MMAP input
mamap2m_fit_mmap mam Fits MAPH/MAMAP(2,m) by approximating characteristics

of input MMAP processes
mamap2m_fit_trace mam Fits MAMAP(2,m) processes from empirical trace data with

inter-arrival times and class labels
map2_fit mam Fits MAP(2) processes to match specified moments and auto-

correlation decay rates
map2mmpp mam Converts MAP representations to MMPP format for compati-

bility with MMPP-specific algorithms
map_acf mam Computes autocorrelation function (ACF) values for MAP

inter-arrival times at specified lags
map_acfc mam Computes ACFC values for MAP counting processes over

time intervals, measuring temporal correlation
map_block mam Constructs MAP(2) representations from moment and auto-

correlation parameters using fallback
map_ccdf_derivative mam Computes derivatives of MAP complementary cumulative

distribution functions at zero
map_cdf mam Computes CDF values for MAP inter-arrival times using

CTMC uniformization techniques
map_checkfeasible mam Comprehensive validation of MAP matrices including

stochastic properties, numerical stability,
map_count_mean mam Computes mean number of arrivals in MAP counting pro-

cesses over specified time intervals
map_count_moment mam Computes power moments of MAP counting processes using

moment generating functions and
map_count_var mam Computes variance of MAP counting processes over specified

time intervals using matrix
map_embedded mam Computes embedded DTMC matrices from MAP representa-

tions by extracting transition
map_erlang mam Constructs MAP representations of Erlang-k processes with

specified means and phases
map_exponential mam Creates MAP representations of exponential inter-arrival time

distributions with specified
map_feasblock mam Constructs feasible MAP representations when exact moment

matching fails by adjusting
map_feastol mam Provides standard tolerance values for numerical feasibility

checks in MAP algorithms
map_gamma mam Computes gamma parameter measuring autocorrelation decay

rates in MAP processes
map_gamma2 mam Computes largest non-unit eigenvalue of embedded DTMC

for MAP correlation characterization
map_hyperexp mam Constructs MAP representations of two-phase hyperexponen-

tial renewal processes
Continued on next page

107

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
map_idc mam Computes asymptotic index of dispersion for MAP counting

processes, measuring long-term
map_infgen mam Computes infinitesimal generator matrix of underlying

CTMC by combining MAP transition
map_isfeasible mam Provides convenient interface for MAP feasibility validation

with configurable tolerance
map_joint mam Computes joint moments of MAP inter-arrival times for ad-

vanced statistical characterization
map_jointpdf_derivative mam Computes partial derivatives of MAP joint probability density

functions at origin
map_kpc mam Computes Kronecker product composition of multiple MAPs

for building complex arrival processes
map_kurt mam Computes kurtosis of MAP inter-arrival times measuring tail

heaviness and distribution shape
map_lambda mam MAP arrival rate computation algorithms
map_largemap mam Provides size thresholds for determining when MAP algo-

rithms should switch to
map_mark mam Creates Marked MAP (MMAP) representations by adding

class labels to MAP arrivals
map_max mam Computes MAP representation of maximum inter-arrival

times from independent MAP processes
map_mean mam MAP mean inter-arrival time computation algorithms
map_mixture mam Creates probabilistic mixtures of MAP processes with speci-

fied mixture probabilities
map_moment mam Computes raw moments of MAP inter-arrival times using ma-

trix inversion techniques
map_normalize mam Sanitizes MAP matrices by ensuring non-negativity con-

straints and proper diagonal adjustments
map_pdf mam Computes PDF values for MAP inter-arrival times using ma-

trix exponential techniques
map_pie mam Computes steady-state probability vector of embedded

discrete-time Markov chain
map_piq mam Computes steady-state probability vector of underlying

continuous-time Markov chain
map_pntiter mam Computes exact arrival probabilities using iterative numerical

methods based on Neuts and Li
map_pntquad mam Computes MAP point process probabilities using ODE

quadrature methods with Runge-Kutta integration
map_prob mam Computes equilibrium probability distribution of underlying

CTMC for MAP analysis
map_rand mam Generates random MAP representations for testing, simula-

tion, and statistical analysis
map_randn mam Generates random MAP samples with added numerical noise

for robustness testing
map_renewal mam Creates renewal MAP by removing correlations to obtain

memoryless arrival processes
Continued on next page

108 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
map_sample mam Generates random samples from MAP distributions for simu-

lation and empirical analysis
map_scale mam Rescales MAP inter-arrival time distributions to achieve spec-

ified mean values
map_scv mam Computes SCV of MAP inter-arrival times as normalized dis-

persion measure
map_skew mam Computes skewness of MAP inter-arrival times measuring

asymmetry in distributions
map_stochcomp mam Performs state elimination through stochastic complementa-

tion while preserving MAP properties
map_sum mam Computes MAP representations of sums of identical MAP

processes for load scaling
map_sumind mam Computes MAP representations of sums of independent MAP

processes for modeling
map_super mam Creates superposition of MAP processes using Kronecker

product techniques
map_timereverse mam Computes time-reversed MAP by adjusting transition rates

based on stationary distributions
map_var mam MAP variance computation algorithms
map_varcount mam Computes variance of event counts in MAP processes over

specified time intervals
maph2m_fit mam Fits MAPH(2,m) processes to match ordinary moments, class

probabilities, and backward moments
maph2m_fit_mmap mam Fits MAPH(2,m) by approximating characteristics of input

MMAP processes
maph2m_fit_multiclass mam Fits MAPH(2,m) models to multiclass characteristics with

class-specific parameters
maph2m_fit_trace mam Fits MAPH(2,m) from empirical trace data for multiclass ser-

vice time modeling
maph2m_fitc_approx mam Fits MAPH(2,m) using approximation methods for count

statistics when exact solutions fail
maph2m_fitc_theoretical mam Fits MAPH(2,m) using theoretical count statistics for precise

parameter estimation
mapqn_bnd_lr mapqn Implements general linear reduction methods for computing

performance
mapqn_bnd_lr_mva mapqn Implements linear reduction bounds for MAP queueing net-

works using Mean
mapqn_bnd_lr_pf mapqn Implements linear reduction bounds specialized for product-

form MAP
mapqn_bnd_qr mapqn Implements general quadratic reduction methods for comput-

ing performance
mapqn_bnd_qr_delay mapqn Implements quadratic reduction bounds for delay systems in

MAP queueing
mapqn_bnd_qr_ld mapqn Implements quadratic reduction bounds for load-dependent

MAP queueing
Continued on next page

109

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
mapqn_lpmodel mapqn Base class for representing MAP queueing network linear pro-

gramming models
mapqn_parameters mapqn Defines the base parameter structure for MAP queueing net-

work analysis
mapqn_parameters_factory mapqn Factory class for creating parameter objects for MAP queue-

ing network
mapqn_qr_bounds_bas mapqn Implements Queue-Router bounds using the Balanced

Asymptotic Scaling (BAS)
mapqn_qr_bounds_rsrd mapqn Implements Queue-Router (QR) bounds using the Random-

ized Simultaneous
mmap_backward_moment mam Computes backward moments of MMAP inter-arrival times

for each marked class
mmap_compress mam Compresses MMAP using various approximation methods in-

cluding mixture, matching,
mmap_count_idc mam Computes IDC values for each marked class in MMAP count-

ing processes
mmap_count_lambda mam Computes arrival rate vectors for each marked class in MMAP

processes
mmap_count_mcov mam Computes count covariance matrices between marked classes

in MMAP processes
mmap_count_mean mam Computes mean count vectors for each marked class in

MMAP counting processes
mmap_count_var mam Computes variance vectors for counting processes of each

marked class in MMAP
mmap_cross_moment mam Computes cross-moment matrices between different marked

classes in MMAP processes
mmap_embedded mam Computes embedded discrete-time Markov chain for MMAP

processes
mmap_exponential mam Constructs MMAP with exponential inter-arrival distributions

for each marked class
mmap_forward_moment mam Computes forward moments of MMAP inter-arrival times for

each marked class
mmap_hide mam Hides specified arrival classes in MMAP processes by remov-

ing observable events
mmap_idc mam Computes asymptotic IDC for each marked class in MMAP

as time approaches infinity
mmap_isfeasible mam Validates mathematical feasibility of MMAP representations

including stochastic
mmap_issym mam Checks if an MMAP is symmetric
mmap_lambda mam MMAP arrival rate computation algorithms
mmap_maps mam Extracts individual MAP processes for each marked class

from MMAP representations
mmap_mark mam Converts a Markovian Arrival Process with marked arrivals

(MMAP) into a new MMAP with redefined classes based on
a given probability matrix

Continued on next page

110 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
mmap_max mam Computes element-wise maximum of MMAP processes for

synchronization analysis
mmap_mixture mam Creates probabilistic mixtures of MMAP processes with spec-

ified weights
mmap_mixture_fit mam Fits a mixture of Markovian Arrival Processes (MMAPs) to

match the given cross-moments
mmap_mixture_fit_mmap mam Fits a mixture of Markovian Arrival Processes (MMAPs) to

match the given moments
mmap_mixture_order2 mam Creates a second-order MMAP mixture from a collection of

MMAPs
mmap_modulate mam Modulates an MMAP by another MMAP, creating a com-

pound arrival process
mmap_normalize mam Normalizes MMAP matrices to ensure feasibility and mathe-

matical validity
mmap_pc mam Computes the proportion of counts (PC) for each type in a

Markovian Arrival Process with marked arrivals (MMAP)
mmap_pie mam Computes steady-state probability vectors for each marked

class in MMAP processes
mmap_rand mam Generates random MMAP representations for testing and sim-

ulation purposes
mmap_sample mam Generates random samples from MMAP distributions for

each marked class
mmap_scale mam Rescales MMAP inter-arrival distributions to achieve speci-

fied mean values
mmap_shorten mam Converts an MMAP representation from M3A format to BU-

Tools format
mmap_sigma mam Computes one-step class transition probabilities for a Marked

Markovian Arrival Process (MMAP)
mmap_sigma2 mam Computes two-step class transition probabilities for a Marko-

vian Arrival Process (MMAP)
mmap_sum mam Computes superposition of MMAP processes creating inde-

pendent multiclass arrival streams
mmap_super mam Combines multiple MMAP processes into superposed multi-

class arrival streams
mmap_super_safe mam API function for mam operations
mmap_timereverse mam Computes the time-reversed version of a Markovian Arrival

Process with marked arrivals (MMAP)
mmpp2_fit mam Fits MMPP(2) models to match specified moments and corre-

lation characteristics
mmpp2_fit1 mam Fits MMPP(2) models using simplified single-parameter ap-

proach for specific scenarios
mmpp2_fitc mam Fits MMPP(2) models using count statistics and index of dis-

persion criteria
mmpp2_fitc_approx mam Fits MMPP(2) using optimization-based approximation meth-

ods for count statistics
Continued on next page

111

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
mmpp_rand mam Generates random MMPP models with diagonal D1 matrices

for testing and simulation
ms_additivesymmetricchisquared measures Additive symmetric chi-squared distance between two proba-

bility distributions
ms_adtest measures Implements the Anderson-Darling test for assessing whether

a sample comes from
ms_avgl1linfty measures Average L1 L-infinity distance between two probability dis-

tributions
ms_bhattacharyya measures Computes the Bhattacharyya distance measuring the similar-

ity between probability
ms_canberra measures Canberra distance between two probability distributions
ms_chebyshev measures Chebyshev Distance for Probability Distributions
ms_chisquared measures Squared chi-squared distance between two probability distri-

butions
ms_cityblock measures Implements the City block distance between probability dis-

tributions
ms_clark measures Clark distance between two probability distributions
ms_condentropy measures Computes conditional entropy measuring the remaining un-

certainty
ms_cramer_von_mises measures Implements the Cramer-von Mises test statistic for comparing

two empirical distributions
ms_cosine measures Computes cosine distance (1 - cosine similarity) measuring

the angle between two
ms_czekanowski measures Czekanowski distance between two probability distributions
ms_dice measures Dice distance between two probability distributions
ms_divergence measures Divergence distance between two probability distributions
ms_entropy measures Implements Shannon entropy for discrete random variables
ms_euclidean measures Implements the standard Euclidean distance between proba-

bility distributions
ms_fidelity measures Fidelity distance between two probability distributions
ms_gower measures Gower distance between two probability distributions
ms_harmonicmean measures Harmonic mean distance between two probability distribu-

tions
ms_hellinger measures Computes the Hellinger distance measuring dissimilarity be-

tween probability distributions
ms_intersection measures Intersection distance between two probability distributions
ms_jaccard measures Jaccard distance between two probability distributions
ms_jeffreys measures Jeffreys divergence between two probability distributions
ms_jensendifference measures Jensen difference divergence between two probability distri-

butions
ms_jensenshannon measures Implements Jensen-Shannon divergence, a symmetric and

bounded version of
ms_jointentropy measures Computes joint entropy measuring the uncertainty of joint dis-

tributions
ms_kdivergence measures K-divergence between two probability distributions

Continued on next page

112 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
ms_kolmogorov_smirnov measures Implements the Kolmogorov-Smirnov test for determining if

a sample follows
ms_kuiper measures Implements the Kuiper test statistic, a rotation-invariant vari-

ant of the Kolmogorov-Smirnov
ms_kulczynskid measures Kulczynski d distance between two probability distributions
ms_kulczynskis measures Kulczynski s distance between two probability distributions
ms_kullbackleibler measures Implements the Kullback-Leibler divergence measuring dis-

tribution differences
ms_kumarhassebrook measures Kumar-Hassebrook distance between two probability distri-

butions
ms_kumarjohnson measures Kumar-Johnson distance between two probability distribu-

tions
ms_lorentzian measures Lorentzian distance between two probability distributions
ms_matusita measures Matusita distance between two probability distributions
ms_minkowski measures Minkowski Distance for Probability Distributions
ms_motyka measures Motyka distance between two probability distributions
ms_mutinfo measures Computes mutual information measuring the amount of

shared information
ms_neymanchisquared measures Neyman chi-squared distance between two probability distri-

butions
ms_nmi measures Computes normalized mutual information providing a scale-

invariant measure
ms_nvi measures Computes normalized variation information measuring the

normalized distance
ms_pearsonchisquared measures Pearson chi-squared distance between two probability distri-

butions
ms_probsymmchisquared measures Probabilistic symmetry chi-squared distance between two

probability distributions
ms_relatentropy measures Computes relative entropy measuring the information differ-

ence
ms_product measures Product distance between two probability distributions
ms_ruzicka measures Ruzicka distance between two probability distributions
ms_soergel measures Soergel distance between two probability distributions
ms_sorensen measures Sorensen distance between two probability distributions
ms_squaredchord measures Squared chord distance between two probability distributions
ms_squaredeuclidean measures Squared Euclidean distance between two probability distribu-

tions
ms_taneja measures Taneja distance between two probability distributions
ms_tanimoto measures Tanimoto distance between two probability distributions
ms_topsoe measures Topsoe distance between two probability distributions
ms_wasserstein measures Implements the Wasserstein distance measuring the minimum

cost to transform
ms_wavehegdes measures Wave-Hedges distance between two probability distributions
mtrace_backward_moment trace Computes backward moments of a multi-class trace
mtrace_bootstrap trace Implements bootstrap resampling methods for multi-class em-

pirical trace data
Continued on next page

113

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
mtrace_count trace Computes count statistics from a multi-class trace over speci-

fied time windows
mtrace_cov trace Computes the covariance matrix for multi-type traces
mtrace_cross_moment trace Computes the k-th order moment of the inter-arrival time be-

tween an event
mtrace_forward_moment trace Computes the forward moments of a marked trace
mtrace_iat2counts trace Computes the per-class counting processes of T, i.e., the

counts after
mtrace_joint trace Given a multi-class trace, computes the empirical class-

dependent joint
mtrace_mean trace Computes per-class means for multi-class empirical trace

data. Enables separate
mtrace_merge trace Merges two traces in a single marked (multiclass) trace
mtrace_moment trace Computes empirical class-dependent statistical moments for

multi-class trace data
mtrace_moment_simple trace Computes the k-th order moment of the inter-arrival time be-

tween an event
mtrace_pc trace Computes the probabilities of arrival for each class
mtrace_sigma trace Computes the empirical probability of observing a specific 2-

element
mtrace_sigma2 trace Computes the empirical probability of observing a specific 3-

element
mtrace_split trace Given a multi-class trace with inter-arrivals T and labels L,
mtrace_summary trace Computes summary statistics for multiple trace analysis, pro-

viding
npfqn_nonexp_approx npfqn Implements approximation methods for non-product-form

queueing networks
npfqn_traffic_merge npfqn Implements traffic merging algorithms for non-product-form

queueing networks
npfqn_traffic_merge_cs npfqn Implements traffic merging algorithms for non-product-form

queueing networks
npfqn_traffic_split_cs npfqn Implements traffic splitting algorithms for non-product-form

queueing networks
pfqn_ab pfqn.ld Implements the Akyildiz-Bolch linearizer method for analyz-

ing closed product-form queueing networks
pfqn_aql pfqn.mva Implements the Aggregate Queue Length (AQL) approxima-

tion method for analyzing closed
pfqn_bs pfqn.mva Implements the classic Bard-Schweitzer approximate MVA

algorithm for closed queueing networks
pfqn_ca pfqn.nc Convolution Algorithm for Product-Form Networks
pfqn_cdfun pfqn.ld Provides functionality to evaluate class-dependent scaling

functions in load-dependent queueing networks
pfqn_comomrm pfqn.nc Implements the Convolution Method of Moments specialized

for repairman queueing models
pfqn_comomrm_ld pfqn.ld Implements the Convolution Method of Moments (COMOM)

for computing normalizing constants in
Continued on next page

114 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
pfqn_conwayms pfqn.mva Implements the Conway-Maxwell approximation method for

analyzing closed queueing networks
pfqn_cub pfqn.nc Implements the cubature (multi-dimensional integration) ap-

proach for computing normalizing
pfqn_egflinearizer pfqn.mva Implements the Extended General-Form linearizer approxi-

mation for closed queueing networks
pfqn_fnc pfqn.ld Computes scaling factors for load-dependent functional

servers in product-form queueing networks
pfqn_gflinearizer pfqn.mva Implements the general-form linearizer approximation for

closed queueing networks with
pfqn_gld pfqn.ld Implements the generalized convolution algorithm for com-

puting normalizing constants in
pfqn_gld_complex pfqn.ld Extends the generalized load-dependent convolution algo-

rithm to handle complex-valued
pfqn_gldsingle pfqn.ld Provides specialized auxiliary function for computing normal-

izing constants in single-class
pfqn_gldsingle_complex pfqn.ld Provides specialized auxiliary function for computing normal-

izing constants in single-class
pfqn_kt pfqn.nc Implements the Knessl-Tier asymptotic expansion using the

ray method for computing
pfqn_le pfqn.nc Implements the Laguerre expansion approach for computing

normalizing constants in
pfqn_le_fpi pfqn.nc Implements the fixed-point iteration algorithm used in the La-

guerre expansion method
pfqn_le_fpiz pfqn.nc Implements the fixed-point iteration algorithm for the La-

guerre expansion method
pfqn_le_hessian pfqn.nc Computes the Hessian matrix used in the Laguerre expansion

method for second-order
pfqn_le_hessianz pfqn.nc Computes the Hessian matrix used in the Laguerre expansion

method for closed queueing
pfqn_linearizer pfqn.mva Linearizer Approximate MVA for Product-Form Networks
pfqn_linearizerms pfqn.mva Implements the multi-server version of Krzesinski’s linearizer

approximation for closed
pfqn_linearizermx pfqn.mva Implements linearizer-based approximation methods for

mixed queueing networks with
pfqn_linearizerpp pfqn.mva Implements the Linearizer++ algorithm for closed queueing

networks with enhanced accuracy
pfqn_lldfun pfqn.ld Evaluates limited load-dependent (LLD) scaling functions us-

ing spline interpolation for
pfqn_ls pfqn.nc Implements the logistic sampling approach for computing

normalizing constants in
pfqn_mci pfqn.nc Implements Monte Carlo integration approaches including

Importance Monte Carlo Integration
pfqn_mmint2 pfqn.nc Implements numerical integration for computing normalizing

constants in multi-class
Continued on next page

115

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
pfqn_mmint2_gausslegendre pfqn.nc Implements Gauss-Legendre quadrature integration for com-

puting normalizing constants
pfqn_mmsample2 pfqn.nc Implements importance sampling for computing normalizing

constants in multi-class
pfqn_mom pfqn.nc Implements the Method of Moments using exact arithmetic

with BigFraction for computing
pfqn_mu_ms pfqn.ld Computes load-dependent scaling factors for multi-server

queueing stations with finite
pfqn_mushift pfqn.ld Provides utility function for shifting load-dependent scaling

vectors by one position,
pfqn_mva pfqn.mva Mean Value Analysis for Product-Form Queueing Networks
pfqn_mvald pfqn.ld Load-Dependent Mean Value Analysis
pfqn_mvaldms pfqn.ld Provides wrapper functionality for load-dependent Mean

Value Analysis with automatic
pfqn_mvaldmx pfqn.ld Implements Mean Value Analysis for mixed queueing net-

works with both open and closed classes
pfqn_mvaldmx_ec pfqn.ld Provides auxiliary functionality for computing EC terms used

in load-dependent Mean Value
pfqn_mvams pfqn.mva Provides comprehensive MVA solution for mixed queueing

networks with multi-server stations
pfqn_mvamx pfqn.mva Implements MVA for mixed networks containing both open

and closed classes without multi-server
pfqn_nc pfqn.nc Normalizing Constant Methods for Product-Form Networks
pfqn_nc_sanitize pfqn.nc Sanitizes and preprocesses parameters for product-form

queueing network models to
pfqn_nca pfqn.nc Implements the Normalizing Constant Approximation

method for single-class closed
pfqn_ncld pfqn.ld Provides the main entry point for computing normalizing con-

stants in load-dependent
pfqn_nrl pfqn.nc Implements the Normal Random Lattice approach for com-

puting normalizing constants
pfqn_nrp pfqn.nc Implements the Normal Random Permutation approach for

computing normalizing constants
pfqn_panacea pfqn.nc Implements the PANACEA approximation method for com-

puting normalizing constants in
pfqn_pff_delay pfqn.nc Computes the product-form factor for delay stations in closed

queueing networks
pfqn_procomom2 pfqn.ld Implements the probabilistic class-oriented method of mo-

ments for analyzing
pfqn_propfair pfqn.nc Implements the proportionally fair allocation method using

convex optimization
pfqn_qzgblow pfqn.mva Computes the lower Geometric Bound (GB) for queue lengths

in closed single-class queueing
pfqn_qzgbup pfqn.mva Computes the upper Geometric Bound (GB) for queue lengths

in closed single-class queueing
Continued on next page

116 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
pfqn_rd pfqn.nc Implements the Random Discretization approach for comput-

ing normalizing constants in
pfqn_recal pfqn.nc Implements the RECAL (Recursive Calculation) algorithm

for computing normalizing constants
pfqn_schmidt pfqn.ld Schmidt method for load-dependent MVA with multi-server

stations
pfqn_sqni pfqn.mva Implements the Single Queue Network Interpolation method

for analyzing multi-class closed
pfqn_stdf pfqn.nc Implements McKenna’s 1987 method for computing sojourn

time distributions at
pfqn_stdf_heur pfqn.nc Implements a heuristic variant of McKenna’s 1987 method for

computing sojourn time
pfqn_xia pfqn.ld Implements Xia’s asymptotic approximation method for com-

puting normalizing constants
pfqn_xzabalow pfqn.mva Computes the lower ABA bound for throughput in closed

single-class queueing networks
pfqn_xzabaup pfqn.mva Computes the upper ABA bound for throughput in closed

single-class queueing networks
pfqn_xzgsblow pfqn.mva Computes the lower GSB for throughput in closed single-class

queueing networks using
pfqn_xzgsbup pfqn.mva Computes the upper GSB for throughput in closed single-class

queueing networks using
ph_reindex mam Reindexes phase-type distribution maps for network models

using integer station and class indices
polling_qsys_1limited polling Implements analysis algorithms for 1-limited polling systems

where the
polling_qsys_exhaustive polling Implements analysis algorithms for exhaustive polling sys-

tems where the
polling_qsys_gated polling Implements analysis algorithms for gated polling systems

where the server
qbd_bmapbmap1 mam Analyzes batch arrival and service systems using QBD matrix

methods
qbd_mapmap1 mam Analyzes MAP/MAP/1 queueing systems using QBD matrix

analytic methods
qbd_r mam QBD R-matrix computation algorithms
qbd_r_logred mam Computes QBD R-matrix using logarithmic reduction method

for numerical stability
qbd_raprap1 mam Analyzes RAP/RAP/1 queueing systems using QBD methods

with rational arrival processes
qbd_rg mam Computes fundamental R and G matrices for QBD analysis of

MAP/MAP/1 queues
qbd_setupdelayoff mam Analyzes queueing systems with server setup delays and

switch-off mechanisms
qsys_gg1 qsys Provides comprehensive analysis of G/G/1 queues with gen-

eral arrival and service processes
Continued on next page

117

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
qsys_gig1_approx_allencunneen qsys Implements the widely-used Allen-Cunneen approximation

for general G/G/1 queueing
qsys_gig1_approx_gelenbe qsys G/G/1 queue approximation using Gelenbe’s method
qsys_gig1_approx_heyman qsys Analyzes a G/G/1 queueing system using Heyman’s approxi-

mation
qsys_gig1_approx_kimura qsys G/G/1 queue approximation using Kimura’s method
qsys_gig1_approx_klb qsys Analyzes a G/G/1 queueing system using the Kramer-

Langenbach-Belz (KLB) approximation
qsys_gig1_approx_kobayashi qsys Analyzes a G/G/1 queueing system using Kobayashi’s ap-

proximation
qsys_gig1_approx_marchal qsys Analyzes a G/G/1 queueing system using Marchal’s approxi-

mation
qsys_gig1_approx_myskja qsys G/G/1 queue approximation using Myskja’s method
qsys_gig1_approx_myskja2 qsys G/G/1 queue approximation using enhanced Myskja’s method
qsys_gig1_lbnd qsys G/G/1 queue lower bounds
qsys_gig1_ubnd_kingman qsys Calculates an upper bound on the waiting time for a G/G/1

system using Kingman’s formula
qsys_gigk_approx qsys Analyzes a G/G/k queueing system using an approximation

method
qsys_gigk_approx_cosmetatos qsys G/G/k queue approximation using Cosmetatos method
qsys_gigk_approx_kingman qsys Analyzes a G/G/k queueing system using Kingman’s approx-

imation
qsys_gigk_approx_whitt qsys G/G/k queue approximation using Whitt’s method
qsys_gm1 qsys G/M/1 Queueing System Analysis
qsys_mg1 qsys Implements the Pollaczek-Khinchine formula for M/G/1

queues with Poisson arrivals
qsys_mg1k_loss qsys M/G/1/K loss probability calculation
qsys_mg1k_loss_mgs qsys M/G/1/K loss probability using MacGregor Smith approxima-

tion
qsys_mginf qsys M/G/inf queue analysis (infinite servers)
qsys_mm1 qsys Implements exact analytical solutions for the M/M/1 queue

(Poisson arrivals, exponential
qsys_mm1k_loss qsys M/M/1/K loss probability calculation
qsys_mmk qsys Implements exact analytical solutions for M/M/k queues with

Poisson arrivals,
randp mam Provides random value selection based on relative probability

distributions
rl_env rl Provides a reinforcement learning environment interface for

queueing networks,
rl_env_general rl Provides a general reinforcement learning environment for

queueing networks
rl_td_agent rl Implements a temporal difference learning agent for queueing

network control
rl_td_agent_general rl Implements a general-purpose temporal difference learning

agent for queueing
Continued on next page

118 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
sn_deaggregate_chain_results sn Calculate class-based performance metrics for a queueing net-

work based on performance measures of its chains
sn_get_arv_r_from_tput sn Calculates the average arrival rates at each station from the

network throughputs
sn_get_demands_chain sn Calculate new queueing network parameters after aggregating

classes into chains
sn_get_node_arv_r_from_tput sn API function for sn operations
sn_get_node_tput_from_tput sn APIs to process NetworkStruct objects
sn_get_product_form_chain_params sn Calculate the parameters at class and chain level for a queue-

ing network model
sn_get_product_form_params sn Extracts essential parameters (service demands, populations,

visit ratios) from
sn_get_residt_from_respt sn Calculates the residence times at each station from the re-

sponse times
sn_get_state_aggr sn Aggregates the state of the network
sn_has_class_switching sn Checks if the network uses class-switching
sn_has_closed_classes sn Checks if the network has one or more closed classes
sn_has_dps sn Stochastic network HasDPS algorithms
sn_has_dps_prio sn Stochastic network HasDPSPRIO algorithms
sn_has_fcfs sn Identifies queueing networks using First-Come-First-Served

scheduling disciplines
sn_has_fork_join sn Checks if the network uses fork and/or join nodes
sn_has_fractional_populations sn Checks if the network has closed classes with non-integer

populations
sn_has_gps sn Stochastic network HasGPS algorithms
sn_has_gps_prio sn Stochastic network HasGPSPRIO algorithms
sn_has_hol sn Stochastic network HasHOL algorithms
sn_has_homogeneous_scheduling sn Checks if the network uses an identical scheduling strategy at

every station
sn_has_inf sn Stochastic network HasINF algorithms
sn_has_lcfs sn Stochastic network HasLCFS algorithms
sn_has_lcfs_pr sn Stochastic network HasLCFSPR algorithms
sn_has_lept sn Stochastic network HasLEPT algorithms
sn_has_ljf sn Stochastic network HasLJF algorithms
sn_has_load_dependence sn Checks if the network has a station with load-dependent ser-

vice process
sn_has_mixed_classes sn Checks if the network has both open and closed classes
sn_has_multi_chain sn Stochastic network HasMultiChain algorithms
sn_has_multi_class sn Identifies queueing networks with multiple job classes, which

require specialized
sn_has_multi_class_fcfs sn API function for sn operations
sn_has_multi_class_heter_exp_fcfs sn Checks if the network has one or more stations with multiclass

heterogeneous FCFS
sn_has_multi_class_heter_fcfs sn Checks if the network has one or more stations with multiclass

heterogeneous FCFS
sn_has_multi_server sn Stochastic network HasMultiServer algorithms

Continued on next page

119

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
sn_has_multiple_closed_classes sn Checks if the network has one or more closed classes
sn_has_open_classes sn Checks if the network has one or more open classes
sn_has_polling sn Stochastic network HasPolling algorithms
sn_has_priorities sn Checks if the network uses class priorities
sn_has_product_form sn Determines if a queueing network has a known product-form

solution by validating
sn_has_product_form_not_het_fcfs sn Checks if the network satisfies product-form assumptions

(does not have heterogeneous FCFS)
sn_has_ps sn Stochastic network HasPS algorithms
sn_has_ps_prio sn Stochastic network HasPSPRIO algorithms
sn_has_sept sn Stochastic network HasSEPT algorithms
sn_has_single_chain sn Stochastic network HasSingleChain algorithms
sn_has_single_class sn Stochastic network HasSingleClass algorithms
sn_has_siro sn Stochastic network HasSIRO algorithms
sn_has_sjf sn Stochastic network HasSJF algorithms
sn_is_closed_model sn Identifies closed queueing network models with finite job pop-

ulations and no external
sn_is_mixed_model sn Checks if the network is a mixed model
sn_is_open_model sn Identifies open queueing network models with external ar-

rivals and infinite
sn_is_population_model sn Checks if the model is a population model (only specific

scheduling strategies without priorities or fork-join)
sn_is_state_valid sn Stochastic Network State Validation Utility
sn_print sn Prints comprehensive information about a NetworkStruct
sn_print_routing_matrix sn Prints the routing matrix of the network, optionally for a spe-

cific job class
sn_refresh_visits sn Stochastic Network Visit Ratio Calculator
sn_rtnodes_to_rtorig sn Converts routing matrices from nodes to original format,

specifically handling class switching nodes
trace_mean trace Computes the arithmetic mean of empirical trace data. Fun-

damental statistical
trace_skew trace Computes the skewness of the trace data using Apache Com-

mons Math
trace_var trace Computes sample variance and related statistics for empirical

trace data
wkflow_analyzer wkflow Provides comprehensive workflow analysis capabilities in-

cluding pattern
wkflow_auto_integration wkflow Provides automatic integration capabilities for workflow anal-

ysis with
wkflow_branch_detector wkflow Implements algorithms for detecting branching patterns in

workflow traces
wkflow_loop_detector wkflow Implements algorithms for detecting loop and iterative pat-

terns in workflow
wkflow_parallel_detector wkflow Implements algorithms for detecting parallel execution pat-

terns in workflow
Continued on next page

120 APPENDIX B. API FUNCTION REFERENCE

Table B.1 – API Function Reference. Continued from previous page
Function Name Package Description
wkflow_pattern_updater wkflow Implements dynamic pattern updating algorithms for work-

flow analysis
wkflow_sequence_detector wkflow Implements algorithms for detecting sequential patterns in

workflow traces

Index

’cl’ (non-preemptive priority value), 70
’conway’ (method value), 87
’default’ (method value), 78, 88
’exact’ (method value), 87
’full’ (state space generation value), see Network solvers
’gpu’ (method value), see Network solvers
’ht’ (fork-join handling value), 70
’hvmva’ (high-variance MVA value), 70
’interp’ (high variance handling value), 70
’lqns’ (method value), 86
’lqsim’ (method value), 87
’mmt’ (fork-join handling value), 70
’moment3’ (method value), 88
’nrm’ (method value), 71
’para’ (method value), 69
’reachable’ (state space generation value), see Net-

work solvers
’reiser’ (method value), 87
’rolia’ (method value), 87
’seidmann’ (multiserver approximation value), 70
’serial’ (method value), 69
’shadow’ (shadow server priority value), 70
’softmin’ (multiserver approximation value), 70
’srvn’ (method value), 87
’srvnexact’ (method value), 87
’std’ (method value), 86
’zhou’ (method value), 87

amva (approximate mean value analysis), see Net-
work solvers

Arrival Rate (ArvR), see Analysis methods
AUTO (automatic solver selection), see Network solvers

avg_table() (average performance table method), see
Analysis methods

avgChain() (chain-level averages method), see Anal-
ysis methods

avgNode() (node-level averages method), 73
avgSysTable() (system-wide average table method),

see Analysis methods

bard-schweitzer (Bard-Schweitzer algorithm), 69
blending method (random environment analysis), 92

cdf_resp_t() (response time distribution method), see
Analysis methods

Class switching, see Network models
class-switching mask (class transition matrix), see

Network models
Cox distribution, see Network models
CTMC (Continuous-Time Markov Chain), see Net-

work solvers
cutoff value (truncation parameter), see Network solvers,

76

diffusion-mgk (Diffusion-M/G/k interpolation), 69

Erlang distribution, see Network models
exact (exact solution method), see Analysis methods
Exponential distribution, see Network models

FCFS (First-Come First-Served), see Network mod-
els

first passage time (transient analysis), see Analysis
methods

Fluid solver, see Network solvers

121

122 INDEX

Fork, see Network models
Fork-join systems, see Network models
fork-join systems (parallel processing models), see

Network models, 70

getTranAvg() (transient average method), 74
gpu (GPU acceleration method), see Network solvers

HOL (Head-of-Line Priority), see Network models
hv-mva (high-variance MVA), 69
Hyperexponential, see Network models

INF (Infinite Server), see Network models
infinitesimal generator (CTMC generator matrix), see

Network solvers

JMT (Java Modelling Tools), see Network solvers
jmva (JMT analytical solver method), see Network

solvers
Join, see Network models
jsim (JMT simulation method), see Network solvers

LayeredNetwork, see Layered network models, 80
linearizer (Linearizer algorithm), 69
Load balancing, see Network models

MAM (Matrix Analytic Methods), see Network solvers
matrix-analytic methods (MAM), see Network solvers
MVA (Mean Value Analysis), see Network solvers

NC (Normalizing Constant), see Network solvers
normalizing constant (NC methods), see Network solvers
nrm (next reaction method), 71

options.cache (cache solver results), 76
options.config (solver configuration), 76
options.config.fork_join (fork-join network handling),

70
options.config.hide_immediate (hide immediate tran-

sitions), 68
options.config.highvar (high variance handling op-

tion), 69

options.config.multiserver (multiserver approximation
option), 69

options.config.np_priority (non-preemptive priority op-
tion), 69

options.config.state_space_gen (state space genera-
tion option), see Network solvers

options.cutoff (state space truncation), 76
options.force (bypass solver checks), 76
options.init_sol (initial solution vector), 77
options.iter_max (maximum iterations), 76
options.iter_tol (iteration tolerance), 77
options.keep (keep temporary files), 77
options.method (method selection), 77
options.samples (number of simulation samples), 77
options.seed (random number generator seed), 77
options.stiff (stiff solver selection), 77
options.timespan (temporal range for transient anal-

ysis), 77
options.timestep (timestep for transient analysis), 68
options.tol (general numerical tolerance), 77
options.verbose (verbosity level), 77

para (parallel simulation method), 69
Phase-type distribution, see Network models
phase-type distributions (Markovian class), see Net-

work models

QBD (quasi-birth death processes), see Network solvers
qd-amva (Queue-dependent AMVA), 70
Queue Length (QLen), see Analysis methods
Queue/QueueingStation, 9

Random environment, 89, 92
reachable states (state space enumeration), see Anal-

ysis methods
refreshStruct() (refresh network structure method),

see Network models
Residence Time (ResidT), see Analysis methods
Response Time (RespT), see Analysis methods
RoutingStrategy.JSQ (join-the-shortest-queue), see Net-

work models

INDEX 123

RoutingStrategy.RAND (random routing), see Net-
work models

sampleAggr() (aggregate sampling method), see Anal-
ysis methods

SchedStrategy.DPS (discriminatory processor shar-
ing), see Network models

SchedStrategy.INF (infinite server strategy), see Net-
work models

serial (serial simulation method), 69
Service Time, see Analysis methods
shadow server (shadow server method), 69
SJF (Shortest Job First), see Network models
softmin (softmin approximation method), 70
solver options

cache, 76
config.fork_join, 70
config.highvar, 69
config.multiserver, 69
config.np_priority, 69
cutoff, 76
force, 76
init_sol, 77
iter_max, 76
iter_tol, 77
keep, 77
method, 77
samples, 77
seed, 77
stiff, 77
timespan, 77
tol, 77
verbose, 77

SSA (Stochastic Simulation Algorithms), see Net-
work solvers

State-dependent routing, see Network models, see
Network models

state-dependent routing (adaptive routing), see Net-
work models

stateSpace() (state space generation method), see Anal-
ysis methods

tget() (table get function), see Analysis methods
Throughput (Tput), see Analysis methods
transient classes (temporary job classes), see Net-

work models

Utilization (Util), see Analysis methods

zipf distribution (popularity-based access), see Net-
work models

	Introduction
	What is Line?
	Obtaining the latest release
	References
	Contact and credits
	Copyright and license
	Acknowledgement

	Getting started
	Installation and support
	Software requirements
	Documentation
	Getting help

	Getting started examples
	Controlling verbosity
	Model gallery
	Example 1: A M/M/1 queue
	Example 2: A multiclass M/G/1 queue
	Example 3: Machine interference problem
	Example 4: Round-robin load-balancing
	Example 5: Modelling a re-entrant line
	Example 6: A queueing network with caching
	Example 7: Response time distribution and percentiles
	Example 8: Optimizing a performance metric
	Example 9: Studying a departure process
	Example 10: Basic layered queueing network

	Network models
	Network object definition
	Creating a network and its nodes
	Advanced node parameters
	Job classes
	Routing strategies
	Class switching
	Service and inter-arrival time processes

	Internals
	Representation of the model structure

	Debugging and visualization
	Model import and export
	Supported JMT features

	Analysis methods
	Performance metrics
	Steady-state analysis
	Station average performance
	Station response time distribution
	System average performance

	Specifying states
	Station states
	Network states
	Initialization of transient classes
	State space generation

	Transient analysis
	Computing transient averages
	First passage times into stations

	Sample path analysis
	Sensitivity analysis and numerical optimization
	Fast parameter update
	Refreshing a network topology with non-probabilistic routing
	Saving a network object before a change

	Network solvers
	Overview
	Solution methods
	Line
	CTMC
	FLUID
	JMT
	MAM
	MVA
	NC
	SSA

	Supported language features and options
	Solver features
	Class functions
	Node types
	Scheduling strategies
	Statistical distributions
	Solver options

	Layered network models
	Basics about layered networks
	LayeredNetwork object definition
	Creating a layered network topology
	Describing host demands of entries
	Debugging and visualization

	Internals
	Representation of the model structure
	Decomposition into layers

	Solvers
	LQNS
	QNS
	LN

	Model import and export

	Random environments
	Environment object definition
	Specifying the environment
	Specifying a reset policy
	Specifying system models for each stage

	Solvers
	ENV

	Examples
	API Function Reference

